Infection of Hematopoietic and Stromal Ceils in Human Continuous Bone Marrow Cultures by a Retroviral Vector Containing the Neomycin Resistance Gene

1989 ◽  
Vol 82 (3) ◽  
pp. 136-143 ◽  
Author(s):  
Christie A Holland ◽  
Lisa Rothstein ◽  
Mary Ann Sakakeeny ◽  
Pervin Anklesaria ◽  
James D. Griffin ◽  
...  
1997 ◽  
Vol 6 (4) ◽  
pp. 369-376 ◽  
Author(s):  
J. P. Smith ◽  
J. Kasten-Jolly ◽  
L. Rebellato ◽  
Carl E. Haisch ◽  
Judith M. Thomas

Posttransplant infusion of viable donor bone marrow cells (DBMC) has been shown in our previous studies to promote acceptance of incompatible kidney allografts in rhesus monkeys after treatment with polyclonal antithymocyte globulin to deplete peripheral T-lymphocytes. In this nonhuman primate model, the infusion of the DBMC is requisite for the induction of functional graft tolerance and specific MLR and CTLp unresponsiveness, although the relevant role and fate of bone marrow-derived chimeric cells is uncertain. Standard immunological and molecular techniques applied to this monkey model are unable to differentiate between chimeric cells derived from the infused DBMC and those derived from allograft-borne passenger leukocyte emigrants. To distinguish chimerism due to infused DBMC, we transduced DBMC with a functional neomycin resistance gene (Neor) using the retroviral vector pHSG-Neo. Neor-Mransduced BMC were infused into recipients approximately 2 wk after kidney transplantation and treatment with rabbit antithymocyte globulin. No maintenance immunosuppressive drugs were given. Genomic DNA isolated from peripheral blood leukocytes was used to monitor the presence of Neor-positive cells. Tissue samples obtained at necropsy also were assessed for Neor-positive chimeric cells. The presence of DBMC-derived chimerism was assessed by polymerase chain reaction using Neor sequence-specific primers (PCR-SSP). Chimerism was detectable in recipient tissues at various times for up to 6 mo after DBMC infusion. These studies using gene transduction methodology indicate that a stable genetic marker can provide capability to examine DBMC-derived chimerism for prolonged periods in a nonhuman primate model. This approach should facilitate future studies in preclinical models to study the role and type of chimeric cell lineages in relation to functional allograft tolerance.


Blood ◽  
1995 ◽  
Vol 85 (11) ◽  
pp. 3048-3057 ◽  
Author(s):  
CE Dunbar ◽  
M Cottler-Fox ◽  
JA O'Shaughnessy ◽  
S Doren ◽  
C Carter ◽  
...  

We report here on a preliminary human autologous transplantation study of retroviral gene transfer to bone marrow (BM) and peripheral blood (PB)-derived CD34-enriched cells. Eleven patients with multiple myeloma or breast cancer had cyclophosphamide and filgrastim-mobilized PB cells CD34-enriched and transduced with a retroviral marking vector containing the neomycin resistance gene, and CD34-enriched BM cells transduced with a second marking vector also containing a neomycin resistance gene. After high-dose conditioning therapy, both transduced cell populations were reinfused and patients were followed over time for the presence of the marker gene and any adverse effects related to the gene-transfer procedure. All 10 evaluable patients had the marker gene detected at the time of engraftment, and 3 of 9 patients had persistence of the marker gene for greater than 18 months posttransplantation. The marker gene was detected in multiple lineages, including granulocytes, T cells, and B cells. The source of the marking was both the transduced PB graft and the BM graft, with a suggestion of better long-term marking originating from the PB graft. The steady-state levels of marking were low, with only 1:1000 to 1:10,000 cells positive. There was no toxicity noted, and patients did not develop detectable replication-competent helper virus at any time posttransplantation. These results suggest that mobilized PB cells may be preferable to BM for gene therapy applications and that progeny of mobilized peripheral blood cells can contribute long-term to engraftment of multiple lineages.


Blood ◽  
1990 ◽  
Vol 75 (2) ◽  
pp. 365-369 ◽  
Author(s):  
D Ekhterae ◽  
T Crumbleholme ◽  
E Karson ◽  
MR Harrison ◽  
WF Anderson ◽  
...  

We compared the efficiency of retroviral vector (N2)-mediated transfer of the bacterial neomycin resistance gene (NeoR) into adult and fetal hematopoietic progenitors of sheep and humans by assessing their ability to form colonies in the presence of lethal doses of the neomycin analogue G418 in vitro. Fetal cells from both sheep and humans exhibited a higher degree of NeoR transfer than adult cells. The overall level of NeoR expression was significantly higher for sheep than human cells. The transfer/expression of NeoR into adult human bone marrow hematopoietic progenitors was not affected by the presence or absence of T cells and monocyte/macrophages. The efficiency of NeoR transfer into both adult and fetal human cells, however, was improved when transduction was carried out in the presence of recombinant human interleukin-3 and granulocyte-macrophage colony-stimulating factor. These results demonstrate the greater efficiency of NeoR gene transfer into fetal hematopoietic progenitors, which may provide a basis for the relatively higher efficiency of the in utero approach to gene therapy.


Blood ◽  
1990 ◽  
Vol 75 (2) ◽  
pp. 365-369 ◽  
Author(s):  
D Ekhterae ◽  
T Crumbleholme ◽  
E Karson ◽  
MR Harrison ◽  
WF Anderson ◽  
...  

Abstract We compared the efficiency of retroviral vector (N2)-mediated transfer of the bacterial neomycin resistance gene (NeoR) into adult and fetal hematopoietic progenitors of sheep and humans by assessing their ability to form colonies in the presence of lethal doses of the neomycin analogue G418 in vitro. Fetal cells from both sheep and humans exhibited a higher degree of NeoR transfer than adult cells. The overall level of NeoR expression was significantly higher for sheep than human cells. The transfer/expression of NeoR into adult human bone marrow hematopoietic progenitors was not affected by the presence or absence of T cells and monocyte/macrophages. The efficiency of NeoR transfer into both adult and fetal human cells, however, was improved when transduction was carried out in the presence of recombinant human interleukin-3 and granulocyte-macrophage colony-stimulating factor. These results demonstrate the greater efficiency of NeoR gene transfer into fetal hematopoietic progenitors, which may provide a basis for the relatively higher efficiency of the in utero approach to gene therapy.


1998 ◽  
Vol 9 (8) ◽  
pp. 1157-1164 ◽  
Author(s):  
Tong Wu ◽  
Michael L. Bloom ◽  
Jian-Mei Yu ◽  
John F. Tisdale ◽  
Cynthia E. Dunbar

Endocrinology ◽  
1987 ◽  
Vol 120 (6) ◽  
pp. 2326-2333 ◽  
Author(s):  
B. R. MACDONALD ◽  
N. TAKAHASHI ◽  
L. M. MCMANUS ◽  
J. HOLAHAN, ◽  
G. R. MUNDY ◽  
...  

1979 ◽  
Author(s):  
K. L. Kellar ◽  
B. L. Evatt ◽  
C. R. McGrath ◽  
R. B. Ramsey

Liquid cultures of bone marrow cells enriched for megakaryocytes were assayed for incorporation of 3H-thymidine (3H-TdR) into acid-precipitable cell digests to determine the effect of thrombopoietin on DNA synthesis. As previously described, thrombopoietin was prepared by ammonium sulfate fractionation of pooled plasma obtained from thrombocytopenic rabbits. A control fraction was prepared from normal rabbit plasma. The thrombopoietic activity of these fractions was determined in vivo with normal rabbits as assay animals and the rate of incorporation of 75Se-selenomethionine into newly formed platelets as an index of thrombopoietic activity of the infused material. Guinea pig megakaryocytes were purified using bovine serum albumin gradients. Bone marrow cultures containing 1.5-3.0x104 cells and 31%-71% megakaryocytes were incubated 18 h in modified Dulbecco’s MEM containing 10% of the concentrated plasma fractions from either thrombocytopenic or normal rabbits. In other control cultures, 0.9% NaCl was substituted for the plasma fractions. 3H-TdR incorporation was measured after cells were incubated for 3 h with 1 μCi/ml. The protein fraction containing thrombopoietin-stimulating activity caused a 25%-31% increase in 3H-TdR incorporation over that in cultures which were incubated with the similar fraction from normal plasma and a 29% increase over the activity in control cultures to which 0.9% NaCl had been added. These data suggest that thrombopoietin stimulates DNA synthesis in megakaryocytes and that this tecnique may be useful in assaying thrombopoietin in vitro.


Sign in / Sign up

Export Citation Format

Share Document