Genetic Analysis and Genetic Probes for Oral Bacteria

Author(s):  
R. R. B. Russell
Microbiology ◽  
2004 ◽  
Vol 150 (7) ◽  
pp. 2401-2407 ◽  
Author(s):  
Peter M. Vesey ◽  
Howard K. Kuramitsu

Treponema denticola is a major aetiological organism implicated in periodontal disease. The interaction of T. denticola with other oral bacteria, in particular Porphyromonas gingivalis, in biofilm formation is thought to be an important step in the onset of periodontal disease. The interaction between T. denticola and P. gingivalis has been examined using a panel of T. denticola mutants and their effects on mixed biofilm formation tested in a static biofilm model. T. denticola ATCC 35405 did not form detectable biofilms on various inert surfaces. However, the spirochaete was demonstrated to form a biofilm with preattached P. gingivalis 381. T. denticola cfpA, which lacks the cytoplasmic filament, was unable to produce a mixed biofilm with P. gingivalis. A T. denticola flgE mutant which lacks the flagella hook protein and is therefore non-motile displayed a reduced, but readily detectable, ability to form a mixed biofilm as did the T. denticola mutant which does not possess the major outer sheath protein (Msp). The T. denticola lrrA mutant was only moderately defective in forming mixed biofilms with P. gingivalis. However, the T. denticola methyl-accepting chemotaxis protein (DmcA) did not appear to play a major role in mixed biofilm formation. In contrast, T. denticola lacking the PrtP protein for prolyl-phenylalanine-specific protease, showed an increased ability to form mixed biofilms and a prolonged viability in the biofilm.


Author(s):  
J. E. Laffoon ◽  
R. L. Anderson ◽  
J. C. Keller ◽  
C. D. Wu-Yuan

Titanium (Ti) dental implants have been used widely for many years. Long term implant failures are related, in part, to the development of peri-implantitis frequently associated with bacteria. Bacterial adherence and colonization have been considered a key factor in the pathogenesis of many biomaterial based infections. Without the initial attachment of oral bacteria to Ti-implant surfaces, subsequent polymicrobial accumulation and colonization leading to peri-implant disease cannot occur. The overall goal of this study is to examine the implant-oral bacterial interfaces and gain a greater understanding of their attachment characteristics and mechanisms. Since the detailed cell surface ultrastructure involved in attachment is only discernible at the electron microscopy level, the study is complicated by the technical problem of obtaining titanium implant and attached bacterial cells in the same ultra-thin sections. In this study, a technique was developed to facilitate the study of Ti implant-bacteria interface.Discs of polymerized Spurr’s resin (12 mm x 5 mm) were formed to a thickness of approximately 3 mm using an EM block holder (Fig. 1). Titanium was then deposited by vacuum deposition to a film thickness of 300Å (Fig. 2).


1997 ◽  
Vol 61 (6) ◽  
pp. 491-496 ◽  
Author(s):  
K. HIDAKA ◽  
I. IUCHI ◽  
M. TOMITA ◽  
Y. WATANABE ◽  
Y. MINATOGAWA ◽  
...  

Pathology ◽  
2003 ◽  
Vol 35 (2) ◽  
pp. 141-144 ◽  
Author(s):  
Hiroya Kato ◽  
Sukenari Koyabu ◽  
Shigenori Aoki ◽  
Takuya Tamai ◽  
Masahiro Sugawa ◽  
...  

2005 ◽  
Vol 35 (9) ◽  
pp. 48
Author(s):  
MICHELE G. SULLIVAN

2016 ◽  
Vol 54 (08) ◽  
Author(s):  
R Hall ◽  
K Hochrath ◽  
F Grünhage ◽  
F Lammert

2005 ◽  
Vol 36 (02) ◽  
Author(s):  
A Abicht ◽  
JS Müller ◽  
SK Baumeister ◽  
U Schara ◽  
A Hübner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document