titanium implant
Recently Published Documents


TOTAL DOCUMENTS

930
(FIVE YEARS 258)

H-INDEX

58
(FIVE YEARS 8)

Author(s):  
Guilherme Aparecido Monteiro Duque da Fonseca ◽  
Marcos Fernando Xisto Braga Cavalcanti ◽  
José Daniel de Souza Maior ◽  
Juliana da Silva Pereira ◽  
Leandro augusto Pinto ◽  
...  

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 576
Author(s):  
Yen-Wen Shen ◽  
Yuen-Shan Tsai ◽  
Jui-Ting Hsu ◽  
Ming-You Shie ◽  
Heng-Li Huang ◽  
...  

Clinically, a reconstruction plate can be used for the facial repair of patients with mandibular segmental defects, but it cannot restore their chewing function. The main purpose of this research is to design a new three-dimensionally (3D) printed porous titanium mandibular implant with both facial restoration and oral chewing function reconstruction. Its biomechanical properties were examined using both finite element analysis (FEA) and in vitro experiments. Cone beam computed tomography images of the mandible of a patient with oral cancer were selected as a reference to create 3D computational models of the bone and of the 3D-printed porous implant. The pores of the porous implant were circles or hexagons of 1 or 2 mm in size. A nonporous implant was fabricated as a control model. For the FEA, two chewing modes, namely right unilateral molar clench and right group function, were set as loading conditions. Regarding the boundary condition, the displacement of both condyles was fixed in all directions. For the in vitro experiments, an occlusal force (100 N) was applied to the abutment of the 3D-printed mandibular implants with and without porous designs as the loading condition. The porous mandibular implants withstood higher stress and strain than the nonporous mandibular implant, but all stress values were lower than the yield strength of Ti-6Al-4V (800 MPa). The strain value of the bone surrounding the mandibular implant was affected not only by the shape and size of the pores but also by the chewing mode. According to Frost’s mechanostat theory of bone, higher bone strain under the porous implants might help maintain or improve bone quality and bone strength. The findings of this study serve as a biomechanical reference for the design of 3D-printed titanium mandibular implants and require confirmation through clinical investigations.


Author(s):  
Julia Kamionka ◽  
Rutger Matthes ◽  
Birte Holtfreter ◽  
Christiane Pink ◽  
Rabea Schlüter ◽  
...  

Abstract Objectives Biofilm removal is the decisive factor for the control of peri-implantitis. Cold atmospheric pressure plasma (CAP) can become an effective aid due to its ability to destroy and to inactivate bacterial biofilm residues. This study evaluated the cleaning efficiency of CAP, and air-polishing with glycine (APG) or erythritol (APE) containing powders alone or in combination with CAP (APG + CAP, APE + CAP) on sandblasted/acid etched, and anodised titanium implant surface. Materials and methods On respective titanium discs, a 7-day ex vivo human biofilm was grown. Afterwards, the samples were treated with CAP, APG, APE, APG + CAP, and APE + CAP. Sterile and untreated biofilm discs were used for verification. Directly after treatment and after 5 days of incubation in medium at 37 °C, samples were prepared for examination by fluorescence microscopy. The relative biofilm fluorescence was measured for quantitative analyses. Results Air-polishing with or without CAP removed biofilms effectively. The combination of air-polishing with CAP showed the best cleaning results compared to single treatments, even on day 5. Immediately after treatment, APE + CAP showed insignificant higher cleansing efficiency than APG + CAP. Conclusions CAP supports mechanical cleansing and disinfection to remove and inactivate microbial biofilm on implant surfaces significantly. Here, the type of the powder was not important. The highest cleansing results were obtained on sandblasted/etched surfaces. Clinical relevance. Microbial residuals impede wound healing and re-osseointegration after peri-implantitis treatment. Air-polishing treatment removes biofilms very effectively, but not completely. In combination with CAP, microbial free surfaces can be achieved. The tested treatment regime offers an advantage during treatment of peri-implantitis.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Evelyn Rute Carneiro Maciel ◽  
Eduarda Helena Leandro Nascimento ◽  
Hugo Gaêta-Araujo ◽  
Maria Luiza dos Anjos Pontual ◽  
Andrea dos Anjos Pontual ◽  
...  

Abstract Background This study aimed to investigate the effect of automatic exposure compensation (AEC) of intraoral radiographic systems on the gray values of dental tissues in images acquired with or without high-density material in the exposed region using different exposure times and kilovoltages. The influence of the distance of the high-density material was also investigated. Methods Radiographs from the molar region of two mandibles were obtained using the RVG 6100 and the Express systems, operating at 60 and 70 kV and 0.06, 0.10, and 0.16 s. Subsequently, a titanium implant was inserted in the premolar’s socket and other images were acquired. Using the ImageJ software, two regions of interest were determined on the enamel, coronary dentine, root dentine, and pulp of the first and second molars to obtain their gray values. Results In the RVG 6100, the implant did not affect the gray values (p > 0.05); the increase in kV decreased it in all tissues (p < 0.05), and the exposure time affected only the root dentine and pulp. In the Express, only enamel and coronary dentine values changed (p < 0.05), decreasing with the implant presence and/or with the increase in exposure factors. The distance of the implant did not affect the results (p > 0.05). Conclusions AEC’s performance varies between the radiographic systems. Its effect on the gray values depends not only on the presence or absence of high-density material but also on the kV and exposure time used.


2021 ◽  
Vol 15 (58) ◽  
pp. 232-241
Author(s):  
Thaís Lanícia Braga da Costa ◽  
Dênyson De Almeida Silva ◽  
Milton D’Almeida Ferreira Neto

Resumo: A odontologia vem buscando cada vez mais métodos de reabilitação dentária que sejam menos traumáticos e eficazes estética e visualmente falando. Sob esse aspecto, os implantes dentários têm se desenvolvido cada vez no intuito de garantir a satisfação dos pacientes, através de avanços tecnológicos como o da Nanosuperfície de Titânio. Assim, o presente estudo objetiva abordar a questão das superfícies de implantes de titânio no que se refere à sua capacidade de estímulo na formação óssea, por ser uma técnica que diminui o tempo de osseointegração e, consequentemente, a duração do processo e recuperação do paciente. Para tanto, foi realizada uma revisão bibliográfica em bases de dados eletrônicas acerca do tema, que comprovassem a diminuição de tempo do trabalho do profissional da Odontologia e uma melhor qualidade no que se refere aos implantes dentários, através da análise de três marcas nacionais a fim de comprovar sua eficácia. Palavras-chave: Implante dentário. Nanosuperfície de Titânio. Osseointegração. ---Abstract: Dentistry is increasingly seeking dental rehabilitation methods that are less traumatic and effective aesthetically and visually. In this regard, dental implants have been increasingly developed to ensure patient satisfaction, through technological advances such as the Titanium Nano-surface. Thus, this study aims to address the issue of titanium implant surfaces in terms of their ability to stimulate bone formation, as it is a technique that reduces the time of osseointegration and, consequently, the duration of the process and patient recovery. To this end, a bibliographic review was carried out in electronic databases on the subject, which could prove the reduction of time in the work of the dentistry professional and a better quality regarding dental implants, through the analysis of three national brands to prove its effectiveness. Keywords: Dental implant. Titanium Nano-surface. Osseointegration. 


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Amir Moeintaghavi ◽  
Hossein Bagheri ◽  
Mahdie Yavari Pour ◽  
Shervin Shafiei ◽  
Hamidreza Moslemi ◽  
...  

This study aimed to determine the effects of various lasers on dental implants’ surface characteristics. Nine explanted dental implants were included. Two implants were randomly allocated to four intervention groups, namely, diode (2 W, 810 nm, 10 s), CO2 (2 W, 10600 nm, 10 s), Er : YAG (200 mJ/20 Hz, 2940 nm, 10 s), and Er, Cr : YSGG (200 mJ/20 Hz, 2780 nm, 10 s) groups and one control group. After laser irradiation, all implants were imaged with scanning electron microscopy. Qualitative changes on the surface of implants were evaluated. Quantitative surface changes at the threads and between the threads were assessed by software using depression and prominence plots. The paired t-test was used for statistical analysis. Diode laser irradiation showed the least surface changes while the Er : YAG group showed the greatest surface changes. Furthermore, CO2 and Er : YAG laser irradiation significantly altered the mean profile area at the threads ( p < 0.05 ), while CO2 and Er, Cr : YSGG laser irradiation significantly altered the mean profile area between the threads ( p < 0.05 ). Diode laser irradiation does not alter the implant surface characteristics. However, the use of CO2, Er : YAG, and Er, Cr : YSGG lasers on titanium implant surfaces is discouraged as they damage the titanium implant surfaces.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1524
Author(s):  
Yang Sun ◽  
Yang Yang ◽  
Weibo Jiang ◽  
Haotian Bai ◽  
He Liu ◽  
...  

Background: Bionic surface nanopatterns of titanium (Ti) materials have excellent antibacterial effects in vitro for infection prevention. To date, there is a lack of knowledge about the in vivo bactericidal outcomes of the nanostructures on the Ti implant surfaces. Methods: A systematic review was performed using the PubMed, Embase, and Cochrane databases to better understand surface nanoscale patterns’ in vivo antibacterial efficacy. The inclusion criteria were preclinical studies (in vivo) reporting the antibacterial activity of nanopatterns on Ti implant surface. Ex vivo studies, studies not evaluating the antibacterial activity of nanopatterns or surfaces not modified with nanopatterns were excluded. Results: A total of five peer-reviewed articles met the inclusion criteria. The included studies suggest that the in vivo antibacterial efficacy of the nanopatterns on Ti implants’ surfaces seems poor. Conclusions: Given the small number of literature results, the variability in experimental designs, and the lack of reporting across studies, concluding the in vivo antibacterial effectiveness of nanopatterns on Ti substrates’ surfaces remains a big challenge. Surface coatings using metallic or antibiotic elements are still practical approaches for this purpose. High-quality preclinical data are still needed to investigate the in vivo antibacterial effects of the nanopatterns on the implant surface.


Author(s):  
Alicja Kazek-Kęsik ◽  
Agata Jakóbik-Kolon ◽  
Sebastian Student ◽  
Monika Śmiga-Matuszowicz ◽  
Marta Wala ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document