scholarly journals Nrf2 Activation Induced by Sirt1 Ameliorates Acute Lung Injury After Intestinal Ischemia/Reperfusion Through NOX4-Mediated Gene Regulation

2018 ◽  
Vol 46 (2) ◽  
pp. 781-792 ◽  
Author(s):  
DongDong Chai ◽  
Lei Zhang ◽  
SiWei Xi ◽  
YanYong Cheng ◽  
Hong Jiang ◽  
...  

Background/Aims: Nuclear erythroid 2-related factor-2 (Nrf2) is a major stress-response transcription factor that has been implicated in regulating ischemic angiogenesis. We investigated the effects of Nrf2 in regulating revascularization and modulating acute lung injury. Methods: The expression of Nrf2 and sirtuin1 (Sirt1) was assessed in lung tissue by western blotting and immunofluorescence staining after intestinal ischemia/reperfusion (IIR) in Nrf2–/– and wild-type (WT) mice. The involvement of Nrf2 in angiogenesis, cell viability, and migration was investigated in human pulmonary microvascular endothelial cells (PMVECs). Additionally, the influence of Nrf2 expression on NOX pathway activation was measured in PMVECs after oxygen–glucose deprivation/reoxygenation. Results: We found activation and nuclear accumulation of Nrf2 in lung tissue after IIR. Compared to IIR in WT mice, IIR in Nrf2–/– mice significantly enhanced leukocyte infiltration and collagen deposit, and inhibited endothelial cell marker CD31 expression. Nrf2 upregulation and translocation into the nucleus stimulated by Sirt1 overexpression exhibited remission of histopathologic changes and enhanced CD31 expression. Nrf2 knockdown repressed non-phagocytic cell oxidase 4 (NOX4), hypoxia-inducible factor (HIF-1α) and vascular endothelial growth factor (VEGF) expression after IIR. Nrf2 upregulation by Sirt1 enhances NOX4, HIF-1α and VEGF expression after IIR in WT mice. Furthermore, Nrf2 knockdown suppressed cell viability, capillary tube formation and cell migration in PMVECs after oxygen–glucose deprivation/reoxygenation and also inhibited NOX4, HIF-1 and VEGF expression. Moreover, NOX4 knockdown in PMVECs decreased the levels of VEGF, HIF-1α and angiogenesis. Conclusion: Nrf2 stimulation by Sirt1 plays an important role in sustaining angiogenic potential through NOX4-mediated gene regulation.

2021 ◽  
Vol 263 ◽  
pp. 291
Author(s):  
Georgia Kostopanagiotou ◽  
Efthimios Avgerinos ◽  
Konstantinos Kostopanagiotou ◽  
Nikolaos Arkadopoulos ◽  
Ioanna Andreadou ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Jee Hyun Kim ◽  
Jihye Kim ◽  
Jaeyoung Chun ◽  
Changhyun Lee ◽  
Jong Pil Im ◽  
...  

Aging ◽  
2020 ◽  
Vol 12 (13) ◽  
pp. 12943-12959 ◽  
Author(s):  
Hui Dong ◽  
Zhuanzhuan Qiang ◽  
Dongdong Chai ◽  
Jiali Peng ◽  
Yangyang Xia ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Jee Hyun Kim ◽  
Jihye Kim ◽  
Jaeyoung Chun ◽  
Changhyun Lee ◽  
Jong Pil Im ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Zhuanzhuan Qiang ◽  
Hui Dong ◽  
Yangyang Xia ◽  
Dongdong Chai ◽  
Rong Hu ◽  
...  

Acute lung injury (ALI) has gained increased attention in the field of critical illness research and is associated with a fatality rate of approximately 50%. Nuclear factor erythroid 2-related factor2 (Nrf2) is a key regulator of intracellular oxidation homeostasis and also functions as an antioxidant. It has been reported that Nrf2 associated antioxidant stress is closely related to ferroptosis inhibition. Signal transducer and activator of transcription 3 (STAT3) is activated into phosphorylated STAT3 (pSTAT3) in response to tissue damage and serves as a warning signal to enhance the inflammatory response. In this study, an intestinal ischemia/reperfusion-induced acute lung injury (IIR-ALI) model was established in C57BL/6 mice to investigate the role of Nrf2 in regulating IIR-ALI-associated ferroptosis. Compared with those in the IIR-ALI group, the injection of Fe (15 mg/kg) or ferrostatin-1 (5 mg/kg) (ferroptosis promoter and inhibitor, respectively) via the tail vein could aggravate or alleviate lung injury and pulmonary edema, respectively. Nrf2 was increased in IIR-ALI and promoted the phosphorylation of STAT3 to amplify downstream signals. An in vitro oxygen-glucose deprivation and reoxygenation (OGD-R) model was established in MLE12 cells to imitate the ischemia/reperfusion condition. The cells were transfected with lentiviruses to increase or downregulate the levels of STAT3. We found that Nrf2 and STAT3 played key roles in ferroptosis by regulating SLC7A11, which improved the pathological processes associated with ALI.


Sign in / Sign up

Export Citation Format

Share Document