scholarly journals Real-time mask detection and face recognition using eigenfaces and local binary pattern histogram for attendance system

2021 ◽  
Vol 10 (2) ◽  
pp. 1105-1113
Author(s):  
Mohd Suhairi Md Suhaimin ◽  
Mohd Hanafi Ahmad Hijazi ◽  
Chung Seng Kheau ◽  
Chin Kim On

Face recognition is gaining popularity as one of the biometrics methods for an attendance system in an organization. Due to the pandemic, the common face recognition system needs to be modified to meet the current needs, whereby facemask detection is necessary. The main objective of this paper is to investigate and develop a real-time face recognition system for the attendance system based on the current scenarios. The proposed framework consists of face detection, mask detection, face recognition, and attendance report generation modules. The face and facemask detection is performed using the haar cascade classifier. Two techniques for face recognition were investigated, the eigenfaces and local binary pattern histogram. The initial experimental results and implementation at Kuching Community College show the effectiveness of the system. For future work, an approach that is able to perform masked face recognition will be investigated.

Author(s):  
Feri Susanto ◽  
Fauziah Fauziah ◽  
Andrianingsih Andrianingsih

In the field of industries, businesses, and offices the use of security systems and administrative management through data input using a face recognition system is being developed. Following the era of technological advances, communication and information systems are widely used in various administrative operational activities and company security systems because it is assessed by using a system that is based on facial recognition security levels and more secure data accuracy, the use of such systems is considered to have its characteristics so it is very difficult for other parties to be able to engineer and manipulate data produced as a tool to support the company's decision. Related to this, causing the author is to try to research the detection of facial recognition that is present in the application system through an Android device, then face recognition detection will be connected. and saved to the database that will be used as data about the presence of teaching lecturers. Using the local binary pattern histogram algorithm method to measure the face recognition system that can be applied as a technique in the attendance system of lecturers to be more effective and efficient. Based on testing by analyzing the false rate error rate and the false refusal rate can be seen that the average level of local binary pattern histogram accuracy reaches 95.71% better than through the Eigenface method which is equal to 76.28%.


2014 ◽  
Vol 971-973 ◽  
pp. 1710-1713
Author(s):  
Wen Huan Wu ◽  
Ying Jun Zhao ◽  
Yong Fei Che

Face detection is the key point in automatic face recognition system. This paper introduces the face detection algorithm with a cascade of Adaboost classifiers and how to configure OpenCV in MCVS. Using OpenCV realized the face detection. And a detailed analysis of the face detection results is presented. Through experiment, we found that the method used in this article has a high accuracy rate and better real-time.


Author(s):  
Dr.C K Gomathy ◽  
T. suneel ◽  
Y.Jeeevan Kumar Reddy

The Face recognition and image or video recognition are popular research topics in biometric technology. Real-time face recognition is an exciting field and a rapidly evolving issue. Key component analysis (PCA) may be a statistical technique collectively called correlational analysis . The goal of PCA is to scale back the massive amount of knowledge storage to the dimensions of the functional space required to render the face recognition system. The wide one-dimensional pixel vector generated from the two-dimensional image of the face and therefore the basic elements of the spatial function are designed for face recognition using PCA. this is often the projection of your own space. Sufficient space is decided by the brand. specialise in the eigenvectors of the covariance matrix of the fingerprint image collection. i'm building a camera-based real-time face recognition system and installing an algorithm. Use OpenCV, Haar Cascade, Eigen face, Fisher Face, LBPH and Python for program development.


2019 ◽  
Vol 8 (1) ◽  
pp. 239-245 ◽  
Author(s):  
Shamsul J. Elias ◽  
Shahirah Mohamed Hatim ◽  
Nur Anisah Hassan ◽  
Lily Marlia Abd Latif ◽  
R. Badlishah Ahmad ◽  
...  

Attendance is important for university students. However, generic way of taking attendance in universities may include various problems. Hence, a face recognition system for attendance taking is one way to combat the problem. This paper will present an automated system that will automatically saves student’s attendance into the database using face recognition method. The paper will elaborate on student attendance system, image processing, face detection and face recognition. The face detection part will be done by using viola-jones algorithm method while the face recognition part will be carried on by using local binary pattern (LBP) method. The system will ensure that the attendance taking process will be faster and more accurate.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yi Zhou ◽  
Weili Xia

This paper presents an in-depth study of face detection, face feature extraction, and face classification from three important components of a high-capacity face recognition system for the treatment area of hospital and a study of a high-capacity real-time face retrieval and recognition algorithm for the treatment area of hospital based on a task scheduling model. Considering the real-time nature of our system, our face feature extraction network is modeled by DeepID, and the network is slightly improved by introducing a central loss verification signal to train a DeepID-like network model using central loss and use it to extract face features. To further investigate and optimize the schedulability analysis problem of the directed graph real-time task model, this paper proposes a rigorous and approximate response time analysis method for the directed graph real-time task model with an arbitrary time frame. Based on the theoretical results of the greatly additive algebra, it is shown that the coherent qualifying function is linearly periodic, i.e., the function can be represented by a finite nonperiodic part and an infinitely repeated periodic part, thus calculating the coherent qualifying function independent of the magnitude of the interval time. The algorithm for high-capacity real-time face retrieval and recognition in the treatment area of hospital based on the task scheduling model is further investigated, and a face database is established by using the PCA dimensionality reduction technique. Based on the internal architecture of the processor, image preprocessing and IP core packaging are implemented, and the hardware engineering of the high-capacity real-time face recognition system for hospital visits is built using the IP-based design concept. The performance tests of the face detection model and feature extraction network show that the face detection model has a significant reduction in false-positive rate, better fitting of border regression, and improved time performance. The face feature extraction network has no overfitting, and the features are highly discriminative with small feature extraction time consumption. The high-capacity real-time face recognition system for the treatment area of hospital combined with the optimized directed graph task scheduling model can approach 25 fps, which meets the real-time requirements, and the face recognition rate surpasses that of real people. It realizes the intelligence, self-help, and autonomy of medical services and satisfies the medical needs of users in all aspects.


Author(s):  
R. Rizal Isnanto ◽  
Adian Rochim ◽  
Dania Eridani ◽  
Guntur Cahyono

This study aims to build a face recognition prototype that can recognize multiple face objects within one frame. The proposed method uses a local binary pattern histogram and Haar cascade classifier on low-resolution images. The lowest data resolution used in this study was 76 × 76 pixels and the highest was 156 × 156 pixels. The face images were preprocessed using the histogram equalization and median filtering. The face recognition prototype proposed successfully recognized four face objects in one frame. The results obtained were comparable for local and real-time stream video data for testing. The RR obtained with the local data test was 99.67%, which indicates better performance in recognizing 75 frames for each object, compared to the 92.67% RR for the real-time data stream. In comparison to the results obtained in previous works, it can be concluded that the proposed method yields the highest RR of 99.67%.


Author(s):  
Muhammad Hanif Abdurrahman ◽  
Haryadi Amran Darwito ◽  
Akuwan Saleh

In this era, the occurrence of vehicle theft has become a fairly frequent problem, especially in big cities like Jakarta and Surabaya. Although the technology for car security is very sophisticated (e.g. keyless system), but there are many cases that thieves still can break into the system. Once a car was stolen, the whereabouts of the car was unknown and the thief was on the loose. The goal of this research is to overcome this problem. As a device, this research works on Raspberry Pi 3 that connected with the Raspberry Pi Camera. Using the OpenCV library, with the Haar Cascade method for face detection, and Local Binary Pattern Histogram for face recognition. The device must be connected to the internet in order to send the information using a Telegram message. The research results show the success of the device system in face-recognizing between the car owner and car thief with optimal conditions in the morning until the afternoon with the light intensity around 660 to 1000 lux, and best recognizing distance at 50 cm. The success rate for obtaining the car’s location for the outdoor condition is 100%. Even if there is a slope or an error data, it can be tolerated because the difference was not too high, about 0.1-1.0 m.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Radhey Shyam ◽  
Yogendra Narain Singh

This paper presents a critical evaluation of multialgorithmic face recognition systems for human authentication in unconstrained environment. We propose different frameworks of multialgorithmic face recognition system combining holistic and texture methods. Our aim is to combine the uncorrelated methods of the face recognition that supplement each other and to produce a comprehensive representation of the biometric cue to achieve optimum recognition performance. The multialgorithmic frameworks are designed to combine different face recognition methods such as (i) Eigenfaces and local binary pattern (LBP), (ii) Fisherfaces and LBP, (iii) Eigenfaces and augmented local binary pattern (A-LBP), and (iv) Fisherfaces and A-LBP. The matching scores of these multialgorithmic frameworks are processed using different normalization techniques whereas their performance is evaluated using different fusion strategies. The robustness of proposed multialgorithmic frameworks of face recognition system is tested on publicly available databases, for example, AT & T (ORL) and Labeled Faces in the Wild (LFW). The experimental results show a significant improvement in recognition accuracies of the proposed frameworks of face recognition system in comparison to their individual methods. In particular, the performance of the multialgorithmic frameworks combining face recognition methods with the devised face recognition method such as A-LBP improves significantly.


Sign in / Sign up

Export Citation Format

Share Document