scholarly journals Experimental platform tests for setting performances of distance protection installed in Biskra-Batna of the Algerian transmission line

Author(s):  
Belkacem Mahdad ◽  
Yassine Khelil ◽  
Abdelhak Tobbeche

The modern power system is equipped with protection system based on advanced technology through the use of digital multifunction relay, control system and intelligent selectivity, whose purpose is to ensure maximum security and service continuity of protection relay in the presence of various fault currents. Distance protection is an important protection required in high voltage transmission lines. In this paper, experimental platform tests have been performed and proposed for setting and evaluation the performances of distance protection named Micom P442 installed in Biskra-Batna of the Algerian transmission power system. The performances of the distance protection have been evaluated under various short circuits. In this study, experimental result based single phase fault to ground is analysed and discussed. Experimental results based on the proposed platform tests in terms of precision in detecting faults at various locations and trigger times confirm the efficiency and particularity of the proposed experimental platform tests.

Author(s):  
Ngo Minh Khoa ◽  
Nguyen Huu Hieu ◽  
Dinh Thanh Viet

<p>This paper focuses on analyzing and evaluating impact of a Static Var Compensator (SVC) on the measured impedance at distance protection relay location on power transmission lines. The measured impedance at the relay location when a fault occurs on the line is determined by using voltage and current signals from voltage and current transformers at the relay and the type of fault occurred on the line. The MHO characteristic is applied to analyze impact of SVC on the distance protection relay. Based on the theory, the authors in this paper develop a simulation program on Matlab/Simulink software to analyze impact of SVC on the distance protection relay. In the power system model, it is supposed that the SVC is located at mid-point of the transmission line to study impact of SVC on the distance relay. The simulation results show that SVC will impact on the measured impedance at the relay when the fault occurs after the location of the SVC on the power transmission line.</p>


Electricity ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 168-186
Author(s):  
Md Tanbhir Hoq ◽  
Nathaniel Taylor

The introduction of series capacitors in transmission lines causes problems in terms of reliability and the security of distance protection relays. As distance protection is widely used in the transmission network, the challenge of applying it to series compensated lines has been taken up by utilities and relay manufacturers in various ways. In the field of power system protection, developments are largely driven by relay manufacturers, and are often not published in the academic literature; the status and trend of the relay manufacturer’s development are better found in their product manuals and patent activity. Further insight into specific implementations by transmission utilities can be found from publications in industry-led forums and some academic journals. This article surveys the status and development of distance protection for series compensated lines, with a focus on industrial implementation and practical considerations. Factors that influence the protection of series compensated lines are presented. Implementation examples reported by utilities are summarized as examples of the different situations encountered and the methods used to deal with them. It is observed that many utilities use communication-aided protection in series compensated lines, and distance protection is used with reduced reach. Solutions described in relay manuals are presented to demonstrate the manufacturers’ approaches to problems associated with series capacitor protection. While there are methods to counter voltage inversion, current inversion seems to represent a more serious challenge. A patent overview indicates the trends in this domain to be moving towards time-domain-based faster protection methods.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 46717-46730
Author(s):  
Ahmed Abdel Rahman Mohamed ◽  
Hebatallah Mohamed Sharaf ◽  
Doaa Khalil Ibrahim

Sign in / Sign up

Export Citation Format

Share Document