Hybrid Photovoltaic and Wind Power System with Battery Management System Using Fuzzy Logic Controller

Author(s):  
M. Venkateshkumar ◽  
R. Raghavan

In recent year, the development of hybrid renewable energy sources has the important role of power generation. This paper focused on  design of hybrid PV / Wind power system and its battery management system. The fuzzy logic control based battery management system has been designed for effective power utilization. The proposed control to operate the battery charging and discharging mode during non-linear power generation. The battery will charge whenever the renewable energy power is greater than to consumer load power as well as the battery will discharge whenever the renewable energy power is lesser than to consumer load power. The proposed model will be simulated using Matlab environment and analysis the proposed system results. Finally, simulation results are evaluated and validating the effectiveness of the proposed controller.

Author(s):  
M. Venkateshkumar ◽  
R. Raghavan

<span lang="EN-US">In recent year, the development of hybrid renewable energy sources has the important role of power generation. This paper focused on  design of hybrid PV / Wind power system and its battery management system. The fuzzy logic control based battery management system has been designed for effective power utilization. The proposed control to operate the battery charging and discharging mode during non-linear power generation. The battery will charge whenever the renewable energy power is greater than to consumer load power as well as the battery will discharge whenever the renewable energy power is lesser than to consumer load power. The proposed model will be simulated using Matlab environment and analysis the proposed system results. Finally, simulation results are evaluated and validating the effectiveness of the proposed controller.</span>


Author(s):  
P. Justin Raj ◽  
V. Vasan Prabhu ◽  
K. Premkumar

This paper presents the solar powered charging control of lithium-ion battery. The flyback converter is used to extract the maximum power from the solar photovoltaic (PV) array and charge the battery. This paper also presents the fuzzy logic-based battery management system to protect the batteries due to overcharging and over-discharging conditions. The proposed method is designed and developed in the MATLAB/Simulink platform. Solar PV powered battery system is tested for step change in irradiance conditions and corresponding results are measured and analyzed. The effectiveness of the fuzzy logic-based battery management system is also presented. The simulation model for BMS technique has overall efficiency of 95.1%. In order to verify the effectiveness of the proposed system, experimental verification of the proposed method is implemented in real time and compared with simulation results.


2013 ◽  
Vol 385-386 ◽  
pp. 1122-1126
Author(s):  
Yue Hua Huang ◽  
Qian Cheng Li ◽  
Chen Chen ◽  
Na Peng ◽  
Zuo Dong Duan ◽  
...  

Due to the lack of fossil fuels, people are paying more and more attention to renewable energy. Wind energy is one of the important renewable energy. Unpredictability and volatility of the wind source make the output power unstable, so we need to control the active Power. This paper uses fuzzy control method, and the simulation results show that fuzzy control method mentioned in this paper is better than the conventional PI control for Wind power, the nonlinear system. Based on the analysis of pitch control theory and control process, we design fuzzy pitch controller and its model. We simulates gust wind speed imitates, wind turbine control and verifies the effects of the blur pitch control in a constant speed and constant frequency wind power generation system. According to the results of the simulation, we know the pitch controller of fuzzy logic has a better effect on the active control of the generator of the wind power generation system.


2011 ◽  
Vol 187 ◽  
pp. 97-102 ◽  
Author(s):  
Liang Liang ◽  
Jian Lin Li ◽  
Dong Hui

Recently, more and more people realize the importance of environment protection. Electric power generation systems using renewable energy sources have an advantage of no greenhouse effect gas emission. Among all the choices, wind power can offer an economic and environmentally friendly alternative to conventional methods of power supply. As a result, wind energy generation, utilization and its grid penetration in electrical grid is increasing world wide. The wind generated power is always fluctuating due to its time varying nature and causing stability problem. Inserting energy storage system into large scale wind farm to eliminate the fluctuation becomes a solution for developing large scale renewable energy system connected with grid. The topology diagram and control strategy are presented in this paper. According to the simulation result, it could be indicated that embedding energy storage system into wind power system could improve the access friendly and extend system functions. This paper shows that integrating energy storage system into wind power system will build a more reliable and flexible system for power grid.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2221
Author(s):  
Omer Faruk Goksu ◽  
Ahmet Yigit Arabul ◽  
Revna Acar Vural

Lithium ion (Li-Ion) and lithium polymer (Li-Po) batteries need to be used within certain voltage/current limits. Failure to observe these limits may result in damage to the battery. In this work, we propose a low voltage battery management system (LV-BMS) that balances the processes of the battery cells in the battery pack and the activating-deactivating of cells by guaranteeing that the operation is within these limits. The system operates autonomously and provides energy from the internal battery. It has a modular structure and the software is designed to control the charging and discharging of eight battery cells at most. A STM32F103 microcontroller is used for system control. The fuzzy logic controller (FLC) is used to set the discharge voltage limit to prevent damage to the battery cells, shorten the settlement time and create a specialized design for charge control. The proposed structure enables solar panel or power supplies with different voltage values between 5 V and 8 V to be used for charging. The experimental results show there was a 42% increase in usage time and the voltage difference between the batteries was limited to a maximum of 65 mV. Moreover, the charge current settles at about 20 ms, which is a much faster response when compared to a PID controller.


Sign in / Sign up

Export Citation Format

Share Document