discharge voltage
Recently Published Documents


TOTAL DOCUMENTS

357
(FIVE YEARS 128)

H-INDEX

22
(FIVE YEARS 5)

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Julian F. Baumgärtner ◽  
Frank Krumeich ◽  
Michael Wörle ◽  
Kostiantyn V. Kravchyk ◽  
Maksym V. Kovalenko

AbstractTowards enhancement of the energy density of Li-ion batteries, BiF3 has recently attracted considerable attention as a compelling conversion-type cathode material due to its high theoretical capacity of 302 mAh g−1, average discharge voltage of ca. 3.0 V vs. Li+/Li, the low theoretical volume change of ca. 1.7% upon lithiation, and an intrinsically high oxidative stability. Here we report a facile and scalable synthesis of phase-pure and highly crystalline orthorhombic BiF3via thermal decomposition of bismuth(III) trifluoroacetate at T = 300 °C under inert atmosphere. The electrochemical measurements of BiF3 in both carbonate (LiPF6-EC/DMC)- and ionic liquid-based (LiFSI-Pyr1,4TFSI) Li-ion electrolytes demonstrated that ionic liquids improve the cyclic stability of BiF3. In particular, BiF3 in 4.3 M LiFSI-Pyr1,4TFSI shows a high initial capacity of 208 mA g−1 and capacity retention of ca. 50% over at least 80 cycles at a current density of 30 mA g−1.


2022 ◽  
Author(s):  
Zheng Huang ◽  
Wei Wang ◽  
Wei-Li Song ◽  
Mingyong Wang ◽  
Hao-Sen Chen ◽  
...  

Abstract Aluminum−sulfur (Al−S) batteries of ultrahigh energy-to-price ratios are promising for next-generation energy storage, while they suffer from large charge/discharge voltage hysteresis and short lifespan. Herein, an electrocatalyst-boosting quasi-solid-state Al−S battery is proposed, in which sulfur is anchored on the cobalt/nitrogen co-doped graphene (S@CoNG, as the positive electrode) and chloroaluminate-based ionic liquid (IL) is encapsulated into metal-organic frameworks (IL@MOF, as the quasi-solid-state electrolyte). Mechanistically, the Co−N bonds in CoNG act as electrocatalytic center to continuous induce breaking of Al−Cl bonds and S−S bonds and accelerate the kinetics of sulfur conversion, endowing the Al−S battery with much shortened voltage gap of 0.32 V and 0.98 V in the discharge voltage plateau. Within quasi-solid-state IL@MOF electrolytes, shuttle effect of polysulfides has been inhibited, which stabilizes the process of reversible sulfur conversion. Consequently, the assembled Al−S battery presents high specific capacity of 820 mAh g−1 and 78% capacity retention after 300 cycles. This concept here offers novel insights to design practical Al−S batteries for stable energy storage.


2022 ◽  
Author(s):  
Shashank Shukla ◽  
Mangal Singh Sisodiya ◽  
Vivek Bajpai

Abstract At present, the machining performance of the existing EDM technology depends upon the commonly used pulsed power supply and gap control mechanism. The complexity and the higher cost of the above said vital components, reflected in the product cost. A simple electrical circuit has been applied to control the voltage and the electric magnet so that the tool electrode can levitate over the workpiece at the desired distance (electrode gap). A prototype is fabricated with the DC power supply and the maglev levitation mechanism. To evaluate novel maglev EDM technology with the existing EDM technology, experiments were conducted on Ti-6Al-4V alloy with a brass tool. The discharge waveform of maglev EDM has shown the discharge voltage and current and the absence of short-circuit at high duty factor. A predictive model is formulated by dimensional analysis based on MRR and average surface roughness. The experimental result of conventional EDM from the literature were used to prepare the model. The maglev EDM is showing higher MRR and surface roughness than the prediction. Surface morphology showed similar surfaces as formed in EDM. The specific energy analysis showed that the developed maglev EDM performs in reported data range. It is noted that the proposed technology is in its early stage and the performance is significantly comparable with the existing technology. Therefore, it is expected that the research in this area may help to develop an economically sustainable alternative to the existing costly and complex EDM technology.


2022 ◽  
Vol 92 (3) ◽  
pp. 421
Author(s):  
Д.А. Ложкина ◽  
Е.В. Астрова ◽  
А.М. Румянцев

The results of a study of anodes obtained by carbonization of silicon monoxide by means of a reaction with solid-phase fluorocarbon CF0.8 are presented. Charge/discharge voltage profiles were studied at different currents depending on the composition and temperature of the synthesis of composites. The irreversible losses of the 1st cycle and the contribution to them of intrinsic losses due to the formation of lithium oxide and its silicates and losses associated with the formation of SEI are analyzed. A difference has been established in the behavior of anodes made of SiO carbonized by annealing with CF0.8 at T=800°C (SiO/C composite) and silicon monoxide annealed with CF0.8 at T>1000°C, at which disproportionation occurs simultaneously with the carbonization of SiO (d-SiO/C composite). The difference consisting in a higher discharge capacity, a higher Coulomb efficiency, and better rate capability of d-SiO/C is explained by a change in the composition of the SiOx matrix that occurs during the disproportionation process. The effect of the formation of d-SiO/C anodes by preliminary lithiation with a low current, after which the electrodes can be charged and discharged with much higher currents, has been discovered. The effect is explained by the amorphization of silicon crystallites and the increasing diffusion coefficient of lithium


Author(s):  
Lu Han ◽  
Yuwenxi Zhang ◽  
Yangyang Guo ◽  
Yangjie Wan ◽  
Lingling Fan ◽  
...  

Abstract In this work, the self-corrosion and discharge performance of the as-cast Mg-xSn (x=1, 5, 9 wt.%) anodes for primary Mg-air batteries were studied through microstructure characterization, electrochemical testing and discharge experiments. With the increase of Sn content, the volume fraction of the Mg2Sn phase increases, promoting dendrite refining. According to the electrochemical test, the Mg-1Sn anode shows a higher open circuit potential, resulting in a stronger electrochemical activity. The polarization curve and electrochemical impedance spectra show the corrosion resistance order as Mg-1Sn>Mg-5Sn>Mg-9Sn. In the discharge measurement, the Mg-1Sn anode achieves the best average discharge voltage, anode efficiency, specific capacity, and energy density under all current densities tested. At 10 mA cm-2, the energy density of Mg-1Sn is 1239.621 mWh g-1, which is higher than the Mg-5Sn anode and Mg-9Sn anode, 37% and 25%, respectively. The optimal discharge performance of the Mg-1Sn anode is mainly attributed to the high electrochemical activity and the micron-sized Mg2Sn phase dispersed in the matrix, which facilitates more uniform dissolution.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7671
Author(s):  
Yuliia Chabak ◽  
Bohdan Efremenko ◽  
Ivan Petryshynets ◽  
Vasily Efremenko ◽  
Angeliki G. Lekatou ◽  
...  

The structural features and nanoindentation/tribological properties of 316 stainless steel fabricated by conventional rolling and laser-based powder bed fusion (LPBF) were comparatively investigated regarding the effect of surface-pulsed plasma treatment (PPT). PPT was performed using an electrothermal axial plasma accelerator under a discharge voltage of 4.5 kV and a pulse duration of 1 ms. Optical microscopy, scanning electron microscopy, X-ray diffraction, nanoindentation measurements and tribological tests were applied to characterize the alloys. The LPBF steel presented almost the same modulus of elasticity and double the hardness of rolled steel. However, the LPBF steel manifested lower dry-sliding wear resistance compared with its wrought counterpart due to its porous structure and non-metallic inclusions. Conversely, LPBF steel showed three times higher wear resistance under sliding in simulated body fluid (SBF), as compared with wrought steel. PPT led to steel modification through surface melting to a depth of 22–26 μm, which resulted in a fine cellular structure. PPT moderately improved the dry-sliding wear resistance of LPBF steel by fusion of pores on its surface. On the other hand, PPT had almost no effect on the SBF-sliding wear response of the steel. The modification features were analyzed using a computer simulation of plasma-induced heating.


Author(s):  
En Dar Kim ◽  
Ian Korostelev

An alternative method for field MOV surge arresters diagnosing was observed, the controlled characteristic was the surge voltage of a gap arrester. The condenser that was connected in series with gap arrester was applied as voltage measurement sensor. Electrical aging of active elements (MOV), surge arrester insulation degradation and other types of electric faults causes to voltage increase at capacitor. The voltage value can be measured directly or the energy stored in capacitor can be transformed to electromagnetic signal and, then, registered remotely by specific radio transceiver. The capacitor connected in series with the surge arrester can also be used for leakage current limitation during all the life period of surge arrester. Shunted with a spark gap and presented as the low-current gap arrester with pre-sated discharge voltage glass (porcelain) pin-cap insulator can be the simplest, but reliable sensor.  Taking into consideration modern technologies the surge arrester statement continuous monitoring system can be designed. It also allows locating the place of damaged arrester that is particularly true for remote maintenance of equipped with surge protection devices electrical


2021 ◽  
Vol 03 (04) ◽  
pp. 23-34
Author(s):  
Ala F. AHMED

In this research, we have conducted an experimental study of the dusty plasma to the Aluminum oxide (Al2O3) dust material with a grain radius of (0.2) µm to (0.6) µm. In the experiment, we use air in the vacuum chamber system under different low pressure (0.1-0.8) Torr. The results have showed that the existence of dust particles in air plasma is equal to the Paschen minimum which is (0.4) Torr with Al2O3 dusty and without dust. The effect of Al2O3 dust particles on the plasma characteristics like floating potential (Vf), plasma potential (Vp), electron saturation current (Ies), temperature of the electron (Te), density of electron (ne) and density of ion (ni) of the DC system that can be calculated in the glow-discharge region. Parameter measurements are taken by four cylindrical probes which are diagnosed at a distance of (40) mm from the cathode diameter, the Paschen minimum at a pressure of (0.4) Torr. The plasma potential and the probe's floating voltage become more negative when dust is immersed in the plasma region. The features of these parameters show that the current discharge decreases while the discharge voltage increases when the aluminum oxide dust particles that are incorporated. And vice versa was in the absence of dust. Electron density increases in the existence of dust particles which causes the electron temperature to decrease.


2021 ◽  
Vol 2143 (1) ◽  
pp. 012051
Author(s):  
Zhengyong Hu ◽  
Peng Xu ◽  
Wenlong Tan ◽  
Kai Gao ◽  
Lv Cui

Abstract In today’s rapid economic development, with the development of science and technology, higher requirements have been put forward in the economic operation of the system. This requires various departments to make more reasonable use of existing energy and equipment, and to ensure quality. Meet all aspects of supply with more energy-saving and more economical operation methods. Therefore, more and more attention has been paid to the research on the method of predicting the breakdown voltage of the air gap. Although domestic and foreign scholars have used power frequency test transformers to carry out a large number of long air gap experimental researches, the research on the breakdown voltage of long air gaps based on the principle of vector machines is still blank. In this paper, a vector machine test device is used to study the breakdown discharge characteristics of a long air gap at two frequencies of 229Hz and 68Hz. Comparing the test phenomena at different frequencies, it is found that the initial discharge voltage of the streamer corona is lower when the frequency is 229Hz, and the discharge phenomenon before breakdown is more intense, and the quality factor will be significantly reduced due to the violent discharge. At the same time, under the same test conditions, the breakdown voltage at 229Hz is lower than that at 68Hz, and as the air gap increases, the difference between the two is greater. The experimental results show that the breakdown voltage of the long air gap based on the vector machine is different when the frequency is different, and the safety distance of the field withstand voltage test should be evaluated according to the experimental data under the vector machine condition to ensure the safety of the test.


2021 ◽  
Vol 03 (04) ◽  
pp. 17-22
Author(s):  
Hanaa Khudhaier Mohammed Ali AL-HAIDARY ◽  
A.F.Abed AL-KHADER

In this research, we have conducted an experimental study of the dusty plasma to the Aluminum oxide (Al2O3) dust material with a grain radius of (0.2) µm to (0.6) µm. In the experiment, we use air in the vacuum chamber system under different low pressure (0.1-0.8) Torr. The results have showed that the existence of dust particles in air plasma is equal to the Paschen minimum which is (0.4) Torr with Al2O3 dusty and without dust. The effect of Al2O3 dust particles on the plasma characteristics like floating potential (Vf), plasma potential (Vp), electron saturation current (Ies), temperature of the electron (Te), density of electron (ne) and density of ion (ni) of the DC system that can be calculated in the glow-discharge region. Parameter measurements are taken by four cylindrical probes which are diagnosed at a distance of (40) mm from the cathode diameter, the Paschen minimum at a pressure of (0.4) Torr. The plasma potential and the probe's floating voltage become more negative when dust is immersed in the plasma region. The features of these parameters show that the current discharge decreases while the discharge voltage increases when the aluminum oxide dust particles that are incorporated. And vice versa was in the absence of dust. Electron density increases in the existence of dust particles which causes the electron temperature to decrease.


Sign in / Sign up

Export Citation Format

Share Document