scholarly journals Performance Analysis of Doubly Fed Induction Generator Using Vector Control Technique

Author(s):  
Aye Myat Thin ◽  
Nang Saw Yuzana Kyaing

There are many solar power and wind stations installed in the power system for environmental and economic reasons. In fact, wind energy is inexpensive and the safetest among all sources of renewable energy, it has been recognized that variable speed wind turbine based on the doubly fed induction generator. It is the most effective with less cost and high power yield. This paper has chosen doubly fed induction generator for a comprehensive study of modelling, performance and analysing. DFIG wind turbine has to operate below and above synchronous speed which requires smooth transition mode change for reliable operation to be controlled to provide stability for the power system. Hence its performance depends on the generator itself and the converter operation and control system. This paper presents completed mathematical model of DFIG with its AC/DC/AC converter driven by DC machine. The rotor is considered fed by a voltage source converter whereas the stator is connected to the grid directly. The capacity of the wind power generation is 1.5MW. The voltage rating and frequency for this system are 575V, 50Hz .This paper show detailed model of DFIG.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
A. A. Mohammed

There are many solar power and wind stations installed in the power system for environmental and economic reasons. In fact, wind energy is inexpensive and the safest among all sources of renewable energy, it has been recognized that variable speed wind turbine based on the doubly fed induction generator is the most effective with less cost and high power yield. Therefore, this paper has chosen doubly fed induction generator for a comprehensive study of modeling, analyzing, and control. DFIG in wind turbine has to operate below and above the synchronous speed, which requires smooth transition mode change for reliable operation, specially, close to synchronous speed where the DFIGWT instability starts to appear. Furthermore, its output electric power has to be controlled to provide stability for the power system; hence its performance depends on the generator itself and the converter operation and control system. This paper presents completed mathematical model of DFIG with its AC/DC/AC converter driven by DC machine. A new vector control technique is designed and modeled, which allows to evaluate the dynamic performance of the controller under (below, above, and through synchronous speed). The simulation results demonstrate the accuracy and high performance of the new control system of DFIG for wind turbine, which provides smooth transition mode without using any extra circuit.


Automatic Generation Control of two area multi unit interconnected thermal power system with dynamic participation of Doubly Fed Induction Generator based on the wind turbines. In this work two areas consisting of three unequal turbines both areas are connected to the DFIG based wind turbine. Area 1 consisting of three reheat turbines with Doubly Fed Induction Generator based on wind turbine and area2 consisting of three non reheat turbines with Doubly Fed Induction Generator based on wind turbine and two areas interconnected by tie line. Two different controllers are used, namely PID and cascaded PD-PI controllers. The controllers effectively tuned by hybridization algorithm. 1% step load disturbance is applied in area 1 for analyzing the dynamic performance. The performance of two area multi-unit power system is done in MATLAB/SIMILINK software. The dynamic response of the considered system is compared in terms of undershoots, overshoot and settling times


Author(s):  
V. Mohana Kalyani ◽  
J. Preetha Roselyn ◽  
C. Nithya ◽  
D. Devaraj

Due to increasing demand in power, the integration of renewable sources like wind generation into power system is gaining much importance nowadays. The heavy penetration of wind power into the power system leads to many integration issues mainly due to the intermittent nature of the wind and the desirability for variable speed operation of the generators. As the wind power generation depends on the wind speed, its integration into the grid has noticeable influence on the system stability and becomes an important issue especially when a fault occurs on the grid. The protective disconnection of a large amount of wind power during a fault will be an unacceptable consequence and threatens the power system stability. With the increasing use of wind turbines employing Doubly Fed Induction Generator (DFIG) technology, it becomes a necessity to investigate their behavior during grid faults and support them with fault ride through capability. This paper presents the modeling and simulation of a doubly fed induction generator according to grid code compatibility driven by a wind turbine connected to the grid. This paper analyses the voltage sag due to a three-phase fault in the wind connected grid. A control strategy including a crowbar circuit has been developed in MATLAB/SIMULINK to bypass the rotor over currents during grid fault to enhance the fault ride through capability and to maintain system stability. Simulation results show the effectiveness of the proposed control strategies in DFIG based grid connected wind turbine system.


2019 ◽  
Vol 8 (2) ◽  
pp. 367-374
Author(s):  
Ameerul A. J. Jeman ◽  
Naeem M. S. Hannoon ◽  
Nabil Hidayat ◽  
Mohamed M. H. Adam ◽  
Ismail Musirin ◽  
...  

As of late, expanding interest of renewable energy and consumption of non-renewable energy source have prompted developing advancement of renewable energy technology, for example, wind energy. Wind energy has turned out to be one of the reliable sources of renewable energy, which requests extra transmission capacity and better methods for sustaining system reliability. As of now, doubly fed induction generator wind turbine is the most well-known wind turbine. This paper focuses on DFIG wind farm design using MATLAB/SIMULINK and also investigates the issues of the system stability of the DFIG wind turbine micro grid power system. This analysis includes the changes of voltage, current, real power and reactive power based on various conditions of the power system.


2018 ◽  
Vol 27 (10) ◽  
pp. 1850153 ◽  
Author(s):  
Bilel Touaiti ◽  
Hechmi Ben Azza ◽  
Mongi Moujahed ◽  
Mohamed Jemli

This paper presents a fault-tolerant Voltage Source Converter (VSC) for Field Oriented Control (FOC) of a stand-alone Doubly Fed Induction Generator (DFIG) connected to a DC load. In the proposed topology, the stator of the DFIG is connected to a DC load through a diode rectifier, while the rotor is connected to the DC load through a VSC. This topology allows the integration of DFIG in the hybrid system with other sources of production and storage, such as photovoltaic system, connected to the same DC bus. The fault-tolerant VSC consists in incorporating a fourth leg to replace the faulted leg. A fault detection scheme for switch device open-circuit faults is proposed in this study. The novelty of this method consists in analyzing the rotor currents within normal and faulty operating modes. Simulation results are presented for a 3.7[Formula: see text]kW DFIG-DC system with single open-circuit faults that validate the methods presented in this study. The effectiveness of the proposed fault detection method has been validated experimentally by using dSpace DS1104 control board based on TMS320F240 real time Digital Signal Processor (DSP).


2019 ◽  
Vol 16 (2) ◽  
pp. 778-785
Author(s):  
Naeem M. S. Hannoon ◽  
V. Vijayakumar ◽  
K. Vengatesan ◽  
Nabil Hidayat

As of late, expanding interest of renewable energy and consumption of non-renewable energy source have prompted developing advancement of renewable energy technology, for example, wind energy. Wind energy has turned out to be one of the reliable sources of renewable energy, which requests extra transmission capacity and better methods for sustaining system reliability. As of now, doubly fed induction generator wind turbine is the most well-known wind turbine. This paper focuses on DFIG wind farm design using MATLAB/SIMULINK and also investigates the issues of the system stability of the DFIG wind turbine micro grid power system. This analysis includes the changes of voltage, current, real power and reactive power based on various conditions of the power system.


Sign in / Sign up

Export Citation Format

Share Document