scholarly journals Attitude Control of Quadrotor Using PD Plus Feedforward controller on SO(3)

Author(s):  
Almido H Ginting ◽  
Oyas Wahyunggoro ◽  
Adha Imam Cahyadi

<p>This paper proposes a simple scheme of Proportional-Derivative (PD) plus Feedforward controller on SO(3) to control the attitude of a quadrotor. This controller only needs the measurement of angular velocity to calculate the exponential coordinates of the rotation matrix. With rotation matrix as an error variable of the controller, the simulation shows that the controller is able to drive the attitude of the quadrotor from hovering condition to desired attitude and from an attitude condition goes to the hovering condition, despite the system is disturbed. When the system is convergent, the rotation error matrix will be a 3x3 identity matrix.</p>

2018 ◽  
Vol 7 (3.3) ◽  
pp. 379
Author(s):  
Bong Hyun Kim

Background/Objectives: The drones became a representative item in the IoT era. However, there is no drone pilot test system that can safely train this in the education field. Drones have very dangerous structural problems, so it is very necessary to practice them easily. Therefore, it is necessary to develop a system that can control the drones safely and easily while controlling them.Methods/Statistical analysis: In this paper, we will develop software for controlling a dedicated board platform that can securely perform ground testing by mounting four drones of motor and drive on a board (PCB). To this end, we supported various control IMU (Inertial Measurement Unit) boards for attitude control by using sensor which is the core technology of drone flight control. Also, Acceleration Data, Angular Velocity Data, Earth Magnetic Field Data, and Atmospheric Pressure Data for maintaining the altitude were used for the drone flight.Findings: In the implemented central control system, the AT chip is built in and designed to perform all control related to the flight of the drone. In addition, since it is an embedded system, we have programmed the attitude control using the sensor, the motor output setting, and the controller connection information. The CPU required for drones control can be replaced with various types of controllers besides Fno Arduino, UNO, Muiltiwii. For this purpose, the main PCB is designed so that the power supply terminal can be used for each CPU. Finally, it was developed as a setup program to correct the sensor and output of the drone.Improvements/Applications: The system implemented in this paper can easily control the drone. In addition, acceleration, angular velocity, geomagnetic field, air pressure sensor, GPS, etc. necessary for drone control can be utilized by stabilizing the initial set value. In other words, the zero point of the sensor can be captured and the signal appropriate to the current state of the drone can be stored in the processor.  


2017 ◽  
Vol 40 (13) ◽  
pp. 3736-3743
Author(s):  
ChengGang Pan ◽  
GaoFei Zhang

Spherical actuators have many applications in satellite attitude control. It is very important for closed-loop control to measure the angular velocity vector of the spherical rotor accurately and quickly. This paper proposes one non-contact method for measuring angular velocity vector of a spherical rotor, using four color sensors. The spherical rotor surface should be color-coded with red, blue, green, magenta, yellow, cyan, black and white, while each color covers an octant in sequence. Four color sensors are mounted about the vertexes of a tetrahedron, used to sense the color of the spherical surface and transform them into angular velocity vector. Simulations approve the correctness of this method, within a module error of approximately 5.2 rpm and a direction error of 0.88 degree within 4000 rpm. Experiments verify that the random error is smaller than 2.7 rpm and direction error smaller than 1.1 degree within 2000 rpm.


Robotica ◽  
2014 ◽  
Vol 33 (2) ◽  
pp. 282-294 ◽  
Author(s):  
Hao Liu ◽  
Jianxiang Xi ◽  
Yisheng Zhong

SUMMARYIn this paper, the robust, optimal, output control problem is dealt with for a 3-degree-of-freedom laboratory helicopter. The control goal is to achieve the practical tracking of the desired elevation and pitch angles without the angular velocity feedback. A nominal linear time-invariant system is introduced and the real system is considered as the nominal one with uncertainties, including parameter perturbations, nonlinear time-varying uncertainties, and external disturbances. An observer is first used to estimate angular velocity. Then a nominal controller based on the optimal control method is designed for the nominal system to achieve the desired tracking properties. Lastly, a robust output compensator is added to restrain the effects of uncertainties in the real system. It is shown that asymptotic tracking properties and robust stability can be achieved. Experimental results on the laboratory helicopter are shown to verify the effectiveness of the proposed control method.


Sign in / Sign up

Export Citation Format

Share Document