scholarly journals A review on optimal placement and sizing of custom power devices/FACTS devices in electrical power systems

Author(s):  
V. Tejaswini ◽  
D. Susitra

Power loss reduction, improvement of voltage profile, system reliability and system security are the important objectives that motivated researchers to use custom power devices/FACTS devices in power systems. The existing power quality problems such as power losses, voltage instability, voltage profile problem, load ability issues, energy losses, reliability problems etc. are caused due to continuous load growth and outage of components. The significant qualities of custom power devices /FACTS devices such as power loss reduction, improvement of voltage profile, system reliability and system security have motivated researchers in this area and to implement these devices in power system. The optimal placement and sizing of these devices are determined based on economical viability, required quality, reliability and availability. In published literatures, different algorithms are implemented for optimal placement of these devices based on different conditions. In this paper, the published literatures on this field are comprehensively reviewed and elaborate comparison of various algorithms is compared. The inference of this extensive comparative analysis is presented.  In this research, Meta heuristic methods and sensitive index methods are used for determining the optimal location and sizing of custom power devices/FACTS devices. The combination of these two methods are also implemented and presented.

1995 ◽  
Vol 32 (1) ◽  
pp. 43-50
Author(s):  
T. S. Abdel-Salam ◽  
R. Hackam ◽  
A. Y. Chikhani

Voltage profile and power loss in a uniform distribution feeder A teaching topic suitable for inclusion in a power systems course is described. The dependence of voltage profile and power loss reduction of a uniformly distributed feeder, on the parameters of (1) location of compensating capacitor, (2) rating of capacitor, (3) load level and (4) power factor is demonstrated.


KURVATEK ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 1-6
Author(s):  
Sugiarto Kadiman

This paper presents a proposed function which is known as techno-economic model for optimal placement of distributed generation (DG) resources in distribution systems in order to minimize the power losses and improve voltage profile. Combined sensitivity factors (CSF), such real power loss reduction index, reactive power loss reduction index, voltage profile improvement index, and life cycle cost, and particle swarm optimization (PSO) are applied to the proposed technique to obtain the best compromise between these costs. Simulation results on IEEE 14-bus test system are presented to demonstrate the usefulness of the proposed procedure.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Selvarasu Ranganathan ◽  
S. Rajkumar

The selection of positions for unified power flow controller (UPFC) placement in transmission network is an essential factor, which aids in operating the system in a more reliable and secured manner. This paper focuses on strengthening the power system performance through UPFC placement employing self-adaptive firefly algorithm (SAFA), which selects the best positions along with parameters for UPFC placement. Three single objectives of real power loss reduction, voltage profile improvement, and voltage stability enhancement are considered in this work. IEEE 14, 30, and 57 test systems are selected to accomplish the simulations and to reveal the efficacy of the proposed SAFA approach; besides, solutions are compared with two other algorithms solutions of honey bee algorithm (HBA) and bacterial foraging algorithm (BFA). The proposed SAFA contributes real power loss reduction, voltage profile improvement, and voltage stability enhancement by optimally choosing the placement for UPFC.


2020 ◽  
Vol 39 (3) ◽  
pp. 3839-3851
Author(s):  
Arun Nambi Pandian ◽  
Aravindhababu Palanivelu

Optimal placement of FACTS devices attempts to improve power transfer, minimize active power loss, enhance voltage profile and improve voltage stability, thereby making the operation of power systems more flexible and secured. The classical methods experience difficulties in solving the FACTS placement problem (FPP) with discontinuous functions and may diverge or result oscillatory convergence. Besides the number of FACTS devices for placement should be given as an input while solving the problem. The solution methods then attempts to forcefully place all the specified number of devices in the power system, but in reality, the system may require an optimal number of FACTS for placement. The application of swarm-intelligence based optimization algorithms strives to overcome the drawbacks of classical methods. This paper presents a new solution method for FACTS placement problem using improved harmony search optimization (IHSO) with a newly suggested dissonance mechanism that avoids badly composed music, with a view of avoiding the sub-optimal solutions. Besides, the method requires to specify only the maximum number of FACTS devices for placement and places only the optimal number of devices within the specified maximum number of devices. The paper also includes simulation results of three IEEE test systems for exhibiting the superiority of the proposed method.


2019 ◽  
Vol 8 (4) ◽  
pp. 11631-11636 ◽  

Due to deregulation, exponential growth in the electricity demand, integration of renewable energy sources, lack of analytical computing facility and expansion of network increases the complexity with poor operation of the network. Existing analytical computing facility is failed to give efficient and accurate results for secure operation of the distribution network. Many researchers are working to give potential solution to improve the performance of network operation considering the real time variables. In this paper minimization of power loss is chosen as objective function. Considering the network parameters the optimal placements with different combination of DTC, STATCOM and line reconfiguration are tested on IEEE-15 bus system using MiPower simulation package. The obtained result shows more than 50% power loss reduction, which leads to efficient and stress free operation of the distribution networks.


Author(s):  
Ahmed Mohamed Abdelbaset ◽  
AboulFotouh A. Mohamed ◽  
Essam Abou El-Zahab ◽  
M. A. Moustafa Hassan

<p><span>With the widespread of using distributed generation, the connection of DGs in the distribution system causes miscoordination between protective devices. This paper introduces the problems associated with recloser fuse miscoordination (RFM) in the presence of single and multiple DG in a radial distribution system. Two Multi objective optimization problems are presented. The first is based on technical impacts to determine the optimal size and location of DG considering system power loss reduction and enhancement the voltage profile with a certain constraints and the second is used for minimizing the operating time of all fuses and recloser with obtaining the optimum settings of fuse recloser coordination characteristics. Whale Optimizer algorithm (WOA) emulated RFM as an optimization problem. The performance of the proposed methodology is applied to the standard IEEE 33 node test system. The results show the robustness of the proposed algorithm for solving the RFM problem with achieving system power loss reduction and voltage profile enhancement.</span></p>


Sign in / Sign up

Export Citation Format

Share Document