scholarly journals Active damping method for voltage source inverter-based distributed generator using multivariable finite-control-set model predictive control

Author(s):  
Jonggrist Jongudomkarn ◽  
Warayut Kampeerawat

Despite its advantages, the LCL filter can significantly distort the grid current and constitute a substantially more complex control issue for the grid-connected distributed generators (DGs). This paper presents an active damping approach to deal with the LCL filter's oscillation for the finite-control-set model predictive control (FCS-MPC)-three-phase voltage source inverters (VSIs)-based DG. The new approaches use the multivariable control of the inverter side's filter current and capacitor voltage to suppress the LCL filter resonance. The proposed method has been tested in steady-state and under grid voltage disturbances. The comparative study was also conducted with the existing virtual resistance active damping approaches for an FCS-MPC algorithm. The study validates the developed control schemes' superior performance and shows its ability to eliminate lower-order grid current harmonics and decrease sensitivity to grid voltage distortion.

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Ning Gao ◽  
Huaiyu Fan ◽  
Weimin Wu

Finite control set model predictive control (FCSMPC) is a highly attractive and potential control method for grid-tied converters. However, there are several challenges when employing FCSMPC in an LCL filter-based T-type three-level power conversion system (PCS) for battery energy storage applications. These challenges mainly include the increasing complexity of control algorithm and excessive cost of additional sensors, which deteriorate the performance of PCS and limit the application of FCSMPC. In order to overcome these issues, this paper proposes a simplified FCSMPC algorithm to reduce the computation complexity. Furthermore, full-dimensional state observers are adopted and implemented to estimate the instantaneous values of grid-side current and capacitor voltage for purpose of removing unnecessary electrical sensors. The implementation of proposed FCSMPC algorithm is described step by step in detail. Simulation results are provided as a verification for the correctness of theoretical analysis. Finally, a three-phase T-type three-level PCS prototype rated at 2.30 kVA/110 V is built up. Experimental results extracted from the prototype can verify the effectiveness of the proposed control strategy.


2019 ◽  
Vol 9 (17) ◽  
pp. 3513 ◽  
Author(s):  
Mohammed Alhasheem ◽  
Frede Blaabjerg ◽  
Pooya Davari

Finite control set model predictive control (FCS-MPC) methods in different power electronic applications are gaining considerable attention due to their simplicity and fast dynamics. This paper introduces an assessment of the two-level three-phase voltage source converter (2L-VSC) utilizing different MPC schemes with and without a modulation stage. In order to perform such a comparative evaluation, 2L-VSC efficiency and total harmonics distortion of the voltage (THDv) have been investigated, when considering a linear load. The results demonstrate the performance of different MPC algorithms through an experimental verification on a Danfoss converter, and a set of analyses have been studied using the PLECS and MATLAB/SIMULINK together. It can be concluded that a comparable performance is achieved by using conventional MPC (CMPC), improved MPC (IMPC), periodic MPC (PMPC), and MPC scheme with modulator (M 2 PC) controllers. The assessment is critical to classify the strategies as mentioned earlier according to their efficiency. Furthermore, it gives a thorough point of view on which algorithm is suitable for the grid-forming applications.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2691 ◽  
Author(s):  
Xiaotao Chen ◽  
Weimin Wu ◽  
Ning Gao ◽  
Jiahao Liu ◽  
Henry Shu-Hung Chung ◽  
...  

This paper proposes a novel finite control set model predictive control (FCS-MPC) strategy with merely grid-injected current sensors for an inductance-capacitance-inductance (LCL)-filtered grid-tied inverter, which can obtain a sinusoidal grid-injected current whether three-phase grid voltages are balanced or not. Compared with the conventional FCS-MPC method, four compositions are added in the proposed FCS-MPC algorithm, where the grid voltage observer (GVO) and Luenberger observer are combined together to achieve full status estimations (including grid voltage, capacitor voltage, inverter-side current, and grid-injected current), while the sequence extractor and the reference generator are applied to eliminate the double frequency ripples of the active or reactive power, or the negative sequence component (NSC) of the grid-injected current caused by the unbalanced grid voltage. Simulation model and experimental platform are established to verify the effectiveness of the proposed FCS-MPC strategy, with full status estimations under both balanced and unbalanced grid voltage conditions.


Sign in / Sign up

Export Citation Format

Share Document