scholarly journals Generator and grid side converter control for wind energy conversion system

Author(s):  
Asma Tounsi ◽  
Hafedh Abid

<p>This paper focuses on the modeling and control of a wind energy conversion chain using a permanent magnet synchronous machine. This system behaves a turbine, a generator, DC/DC and DC/AC power converters. These are connected on both sides to the DC bus, where the inverter is followed by a filter which is connected to the grid. In this paper, we have been used two types of controllers. For the stator side converter, we consider the Takagi-Sugeno approach where the parameters of controller have been computed by the theory of linear matrix inequalities. The stability synthesis has been checked using the Lyapunov theory. According to the grid side converter, the proportional integral controller is exploited to keep a constant voltage on the DC bus and control both types of powers. The simulation results demonstrate the robustness of the approach used.</p>

Author(s):  
Italo A. Cavalcanti de Oliveira ◽  
Nady Rocha ◽  
Edison Roberto Cabral da Silva ◽  
Luanna M. Silva de Siqueira ◽  
Ely Cavalcanti de Menezes ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hind Elaimani ◽  
Ahmed Essadki ◽  
Noureddine Elmouhi ◽  
Rachid Chakib

The modeling and control of a wind energy conversion system based on the Doubly Fed Induction Generator DFIG is the discussed theme in this paper. The purpose of this system was to control active and reactive power converted; this control is ensured thanks to the control of the two converters. The proposed control strategies are controlled by PI regulators and the sliding mode technique. In the present work a comparison of the robustness of the 2 controls of the grid side converter (GSC) during a voltage dip is shown. The simulation is carried out using the Matlab/Simulink software with a 300 kW generator.


Sign in / Sign up

Export Citation Format

Share Document