Coagulation factor V and thrombophilia: Background and mechanisms

2007 ◽  
Vol 98 (09) ◽  
pp. 530-542 ◽  
Author(s):  
Kenneth Segers ◽  
Björn Dahlbäck ◽  
Gerry Nicolaes

SummaryHuman coagulation factor V (FV) is an essential coagulation protein with functions in both the pro- and anticoagulant pathways. Failure to express and control FV functions can either lead to bleeding, or to thromboembolic disease. Both events may develop into a life-threatening condition. Since the first description of APC resistance, and in particular the description of the so-called factor VLeiden mutation, in which a prominent activated protein C cleavage site in FV has been abolished through a mutation in the FV gene, FV has been in the center of attention of thrombosis research. In this review we describe how the functions of FV are expressed and regulated and provide an extensive description of the role that FV plays in the etiology of thromboembolic disease.

1998 ◽  
Vol 80 (08) ◽  
pp. 344-345 ◽  
Author(s):  
Pasra Arnutti ◽  
Motofumi Hiyoshi ◽  
Wichai Prayoonwiwat ◽  
Oytip Nathalang ◽  
Chamaiporn Suwanasophon ◽  
...  

1996 ◽  
Vol 75 (02) ◽  
pp. 267-269 ◽  
Author(s):  
H Engel ◽  
L Zwang ◽  
H H D M van Vliet ◽  
J J Michiles ◽  
J Stibbe ◽  
...  

SummaryThe currently used activated Protein C resistance test demonstrated to be of limited diagnostic value for the detection of the mutant Factor V Leiden. Moreover, this assay is not useful for patients under anticoagulant therapy. A modification of the APC resistance test, applying Factor V deficient plasma is described which demonstrates a specificity and sensitivity of 1.0. The superiority of the modified APC resistance test over the existing APC resistance test was verified by genotyping.For that purpose, the Amplification Refractory Mutation System (ARMS) was applied to the detection of the G to A mutation at position 1691 in the gene encoding coagulation Factor V. The mutation at that position could be easily detected by using each of two allele-specific oligonucleotide primers concomitantly with one common primer in two separate polymerase chain reactions, thereby amplifying a fragment of 186 base-pairs of the Factor V gene.


1995 ◽  
Vol 78 (3) ◽  
pp. 193-200 ◽  
Author(s):  
Maria I. Bokarewa ◽  
Katarina Bremme ◽  
Gunnar Falk ◽  
Margareta Sten-Linder ◽  
Nils Egberg ◽  
...  

1995 ◽  
Vol 4 (3) ◽  
pp. 191-197 ◽  
Author(s):  
Xiao-Yuan Liu ◽  
Diana Nelson ◽  
Chris Grant ◽  
Virginia Morthland ◽  
Scott H. Goodnight ◽  
...  

2012 ◽  
Vol 107 (01) ◽  
pp. 15-21 ◽  
Author(s):  
Thomas J. Cramer ◽  
Andrew J. Gale

SummaryAlmost two decades ago an anticoagulant function of factor V (FV) was discovered, as an anticoagulant cofactor for activated protein C (APC). A natural mutant of FV in which the R506 inactivation site was mutated to Gln (FVLeiden) was inactivated slower by APC, but also could not function as anticoagulant cofactor for APC in the inactivation of activated factor VIII (FVIIIa). This mutation is prevalent in populations of Caucasian descent, and increases the chance of thrombotic events in carriers. Characterisation of the FV anticoagulant effect has elucidated multiple properties of the anticoagulant function of FV: 1) Cleavage of FV at position 506 by APC is required for anticoagulant function. 2) The C-terminal part of the FV B domain is required and the B domain must have an intact connection with the A3 domain of FV. 3) FV must be bound to a negatively charged phospholipid membrane. 4) Protein S also needs to be present. 5) FV acts as a cofactor for inactivation of both FVa and FVIIIa. 6) The prothrombotic function of FVLeiden is a function of both reduced APC cofactor activity and resistance of FVa to APC inactivation. However, detailed structural and mechanistic properties remain to be further explored.


Nature ◽  
1994 ◽  
Vol 369 (6475) ◽  
pp. 64-67 ◽  
Author(s):  
Rogier M. Bertina ◽  
Bobby P. C. Koeleman ◽  
Ted Koster ◽  
Frits R. Rosendaal ◽  
Richard J. Dirven ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document