coagulation protein
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 8)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Sandra Konrath ◽  
Reiner K. Mailer ◽  
Thomas Renné

AbstractFactor XII (FXII) is a serine protease zymogen produced by hepatocytes and secreted into plasma. The highly glycosylated coagulation protein consists of six domains and a proline-rich region that regulate activation and function. Activation of FXII results from a conformational change induced by binding (“contact”) with negatively charged surfaces. The activated serine protease FXIIa drives both the proinflammatory kallikrein–kinin pathway and the procoagulant intrinsic coagulation cascade, respectively. Deficiency in FXII is associated with a prolonged activated partial thromboplastin time (aPTT) but not with an increased bleeding tendency. However, genetic or pharmacological deficiency impairs both arterial and venous thrombosis in experimental models. This review summarizes current knowledge of FXII structure, mechanisms of FXII contact activation, and the importance of FXII for diagnostic coagulation testing and thrombosis.


2021 ◽  
Vol 8 ◽  
Author(s):  
Evasio Pasini ◽  
Giovanni Corsetti ◽  
Claudia Romano ◽  
Tiziano M. Scarabelli ◽  
Carol Chen-Scarabelli ◽  
...  

Background: Many patients who have been suffering by Covid-19 suffer of long-Covid syndrome, with symptoms of fatigue and muscular weakness that characterize post-acute sequelae SARS-CoV-2 infection (PASC). However, there is limited knowledge about the molecular pathophysiology, and about the serum profile of these patients.Methods: We studied the blood serum profile of 75 selected patients, with previous confirmed Covid-19, 2 months after hospital discharge, who reported new-onset fatigue, muscle weakness and/or dyspnea not present prior to the virus infection and independently from concomitant diseases and/or clinical conditions.Results: All patients had very high serum concentrations of ferritin and D-Dimer. 87 and 72% of patients had clinically significant low levels of hemoglobin and albumin, respectively. Seventy three percentage had elevations in erythrocyte sedimentation rate and CRP. Twenty seven percentage had elevations in LDH.Conclusions: The co-existence of patient symptoms along with blood markers of coagulation, protein disarrangement and inflammation suggests ongoing alterations in the metabolism, promoting an inflammatory/hypercatabolic state which maintains a vicious circles implicated in the persistence of PASC. The persistence of altered D-Dimer levels raises the possibility of long-term risks of thromboembolic disease. All these markers levels should be accurately evaluated in the long-term follow-up, with individualized consideration for prophylactic nutritional, anti-inflammatory and/or anticoagulant therapy if indicated.


2021 ◽  
Vol 9 ◽  
Author(s):  
Elise J. Huisman ◽  
Gemma Louise Crighton

Fibrinogen is a key coagulation protein, playing a critical role in hemostasis. It is the first factor to decrease to critical levels during bleeding. Hypofibrinogenemia is an important risk factor for bleeding in clinical settings, including pediatric surgery. Yet, the optimal measurement of fibrinogen levels is subject to debate, as is the critical threshold for intervention. Fibrinogen replacement may be provided by cryoprecipitate and fibrinogen concentrate. Whilst both products contain fibrinogen, they are not equivalent, each has its own advantages and disadvantages, especially for pediatric use. Unfortunately, medical literature to support fibrinogen replacement in children is limited. In this article we review the current diagnostic tools to measure fibrinogen, with respect to their use in the pediatric critical care setting. Secondly, we evaluate the different fibrinogen replacement therapies, focusing on cryoprecipitate and fibrinogen concentrate and examine their individual product characteristics, associated risks and benefits, different dosing strategies and specific pitfalls for use in children. We summarize by highlighting current knowledge gaps and areas for future research.


2021 ◽  
Vol 22 (4) ◽  
pp. 2185
Author(s):  
Gael B. Morrow ◽  
Molly S. A. Carlier ◽  
Sruti Dasgupta ◽  
Fiona B. Craigen ◽  
Nicola J. Mutch ◽  
...  

Fibrinogen is the first coagulation protein to reach critically low levels during traumatic haemorrhage. There have been no differential effects on clinical outcomes between the two main sources of fibrinogen replacement: cryoprecipitate and fibrinogen concentrate (Fg-C). However, the constituents of these sources are very different. The aim of this study was to determine whether these give rise to any differences in clot stability that may occur during trauma haemorrhage. Fibrinogen deficient plasma (FDP) was spiked with fibrinogen from cryoprecipitate or Fg-C. A panel of coagulation factors, rotational thromboelastography (ROTEM), thrombin generation (TG), clot lysis and confocal microscopy were performed to measure clot strength and stability. Increasing concentrations of fibrinogen from Fg-C or cryoprecipitate added to FDP strongly correlated with Clauss fibrinogen, demonstrating good recovery of fibrinogen (r2 = 0.99). A marked increase in Factor VIII, XIII and α2-antiplasmin was observed in cryoprecipitate (p < 0.05). Increasing concentrations of fibrinogen from both sources were strongly correlated with ROTEM parameters (r2 = 0.78–0.98). Cryoprecipitate therapy improved TG potential, increased fibrinolytic resistance and formed more homogeneous fibrin clots, compared to Fg-C. In summary, our data indicate that cryoprecipitate may be a superior source of fibrinogen to successfully control bleeding in trauma coagulopathy. However, these different products require evaluation in a clinical setting.


2020 ◽  
Vol 9 (17) ◽  
Author(s):  
Emily A. Weber ◽  
Meera V. Singh ◽  
Vir B. Singh ◽  
Joseph W. Jackson ◽  
Sara K. Ture ◽  
...  

Background Microvesicles are cell membrane–derived vesicles that have been shown to augment inflammation. Specifically, monocyte‐derived microvesicles (MDMVs), which can express the coagulation protein tissue factor, contribute to thrombus formation and cardiovascular disease. People living with HIV experience higher prevalence of cardiovascular disease and also exhibit increased levels of plasma microvesicles. The process of microvesicle release has striking similarity to budding of enveloped viruses. The surface protein tetherin inhibits viral budding by physically tethering budding virus particles to cells. Hence, we investigated the role of tetherin in regulating the release of MDMVs during HIV infection. Methods and Results The plasma of aviremic HIV‐infected individuals had increased levels of tissue factor + MDMVs, as measured by flow cytometry, and correlated to reduced tetherin expression on monocytes. Superresolution confocal and electron microscopy showed that tetherin localized at the site of budding MDMVs. Mechanistic studies revealed that the exposure of monocytes to HIV‐encoded Tat triggered tetherin loss and subsequent rise in MDMV production. Overexpression of tetherin in monocytes led to morphologic changes in the pseudopodia directly underneath the MDMVs. Further, tetherin knockout mice demonstrated a higher number of circulating MDMVs and less time to bleeding cessation. Conclusions Our studies define a novel regulatory mechanism of MDMV release through tetherin and explore its contribution to the procoagulatory state that is frequently observed in people with HIV. Such insights could lead to improved therapies for individuals infected with HIV and also for those with cardiovascular disease.


2020 ◽  

Raised levels of the blood coagulation protein von Willebrand factor (VWF) are now recognised to be important in patients with liver disease. The markedly raised plasma VWF levels in patients with acute liver failure and acute-on-chronic liver failure may contribute to the pathogenesis of liver failure, and of multi-organ failure, by impeding microcirculatory perfusion in the liver and the other affected vital organs. In this review, the authors present a brief introduction to VWF biology, discuss the ability of raised plasma VWF levels to accurately predict survival in different syndromes of liver diseases, speculate why plasma VWF levels are raised in liver failure syndromes, and examine the therapeutic potential of VWF-lowering therapies in these scenarios.


Stroke ◽  
2019 ◽  
Vol 50 (8) ◽  
pp. 2181-2186 ◽  
Author(s):  
Hendrikus J.A. van Os ◽  
Marieke J. H. Wermer ◽  
Frits R. Rosendaal ◽  
José W. Govers-Riemslag ◽  
Ale Algra ◽  
...  

Background and Purpose— Hypercoagulable states in migraine patients may play a role in the pathophysiology underlying the association between migraine and ischemic stroke. This study aims to provide more insight into the potential association of headache, ischemic stroke, and the intrinsic coagulation pathway. Methods— We included patients from the RATIO study (Risk of Arterial Thrombosis in Relation to Oral Contraceptives), a Dutch population-based case-control study including young women (age <50) with ischemic stroke and healthy controls. We defined a headache group based on a questionnaire on headache history. Intrinsic coagulation proteins were measured through both antigen levels (FXII, FXI, prekallikrein, HK [high molecular weight kininogen]) and protein activation, determined by measuring activated protein complex with C1esterase-inhibitor (FXIIa-C1-INH, FXIa-C1-INH, Kallikrein-C1-INH) or antitrypsin-inhibitor (FXIa-AT-INH). We calculated adjusted odds ratios and performed an interaction analysis assessing the increase in stroke risk associated with high levels of intrinsic coagulation and history of headache. Results— We included 113 ischemic stroke cases and 598 healthy controls. In total, 134 (19%) patients had a history of headache, of whom 38 were cases and 96 controls. The combination of headache and high intrinsic coagulation protein levels (all but FXII antigen level and both FXIa-inhibitors) was associated with an increase in ischemic stroke risk higher than was expected based on their individual effects (adjusted odds ratio FXI antigen level alone: 1.7, 95% CI, 1.0–2.9; adjusted odds ratio headache alone: 2.0, 95% CI, 1.1−3.7; combination: 5.2, 95% CI, 2.3−11.6) Conclusions— Headache and high intrinsic coagulation protein levels may biologically interact, increasing risk for ischemic stroke.


2018 ◽  
Vol 271 ◽  
pp. 247-253 ◽  
Author(s):  
Laura Verbree-Willemsen ◽  
Ya-Nan Zhang ◽  
Crystel M. Gijsberts ◽  
Arjan H. Schoneveld ◽  
Jiong-Wei Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document