anticoagulant function
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 10)

H-INDEX

20
(FIVE YEARS 1)

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3263-3263
Author(s):  
Son Nguyen ◽  
Divij Verma ◽  
Claudine Graf ◽  
Shiri Gur-Cohen ◽  
Jennifer Royce ◽  
...  

Abstract Background All mature blood cells are derived from multipotent hematopoietic stem cells (HSCs) which are activated to meet the demand of the host during inflammation and injury. The endothelial cell protein C receptor (EPCR) is a marker for primitivity and quiescence of HSCs but the relative contributions of EPCR signaling versus anticoagulant functions in HSC maintenance are incompletely defined. Aims We aimed to dissect functions of EPCR by studying anticoagulant and signaling function in HSC of EPCR C/S mice carrying a single intracellular point mutation abolishing normal trafficking of EPCR through endo-lysosomal compartments. We assessed the contributions of EPCR signaling to stem cell maintenance by analyzing HSC mobilization and leukemia progression. Methods We studied the frequency and cell cycle activity of bone marrow (BM) hematopoietic stem and progenitor cells (HSPC) by multicolor flow cytometry. Furthermore, we analyzed changes in hematopoiesis in steady state, after granulocyte colony stimulating factor (G-CSF)-induced mobilization, in the context of aging and in the context of leukemia, using the MLL-AF9-induced acute myeloid leukemia (AML) model. Results HSCs, lungs and isolated lung-derived smooth muscle cells of EPCR C/S mice showed protein expression levels and anticoagulant function indistinguishable from wildtype (WT). We found an increase of circulating HSCs in the peripheral blood of EPCR C/S mice compared to control under steady state conditions. Isolated HSC displayed diminished polarization of CDC42 and VLA-4 (α 4β 1 integrin) affinity to VCAM-1 in EPCR C/S versus strain-matched EPCR wt mice, indicating that EPCR signaling directly controls HSC retention via integrin affinity to the BM niche. In addition, we noticed a higher cell cycle activity in myeloid-restricted progenitors of EPCR C/S mice compared to control. G-CSF treatment led to increased mobilization of both BM neutrophils and HSCs into the peripheral blood of EPCR C/S mice compared to EPCR wt mice. A myeloid bias was also seen in serially transplanted aged mice, resulting in increased frequencies of myeloid-biased progenitors in the BM of EPCR C/S mice compared to control mice, accompanied by an increase of circulating neutrophils in the blood. Consistent with higher cell cycle activity of myeloid progenitors and an overall increase of myeloid-biased output in EPCR C/S mice, induction of AML by retroviral transduction of EPCR C/S BM cells with MLL-AF9-expressing retrovirus resulted in an increase of cell cycle activity of Lin - MLL-AF9 + leukemic BM blasts and a higher leukemic load in the peripheral blood of mice transplanted with MLL-AF9 + EPCR C/S BM compared to control. As a result, MLL-AF9 + EPCR C/S leukemia showed a more aggressive disease with shortened survival times compared to control. In contrast, chemotherapy of MLL-AF9 + EPCR C/S leukemia reduced leukemic load in the peripheral blood and decelerated disease progression. These data demonstrate that increased leukemia cell cycle activity conferred chemosensitivity. Conclusion With a site-specific EPCR mutant knock-in mouse, we here demonstrate that EPCR signaling and anticoagulant function can be separated. We provide direct evidence that EPCR signaling plays a crucial role in maintaining HSC retention via VLA-4 affinity to VCAM-1, controls cell cycle activity and myeloid output in normal, stress-induced, and malignant hematopoiesis with implications for therapeutic approaches in acute myeloid leukemia. Disclosures Ruf: MeruVasimmune: Other: Ownership Interest; ARCA bioscience: Consultancy, Patents & Royalties; ICONIC Therapeutics: Consultancy.


2021 ◽  
Vol 55 (5) ◽  
pp. 605-617

Binding of histones to molecular pattern recognition receptors on endothelial cells and leukocytes provokes proinflammatory responses and promotes activation of coagulation. Histones also bind therapeutic heparins, thereby neutralizing their anticoagulant functions. The aim of this study was to test the hypothesis that histones can interact with the antithrombin (AT)-binding vascular glycosaminoglycans (GAGs) to induce inflammation and inhibit the anti-inflammatory function of AT. METHODS: We evaluated the heparin-binding function of histones by an AT-dependent protease-inhibition assay. Furthermore, we treated endothelial cells with histones in the absence and presence of AT and monitored cellular phenotypes employing established signaling assays. RESULTS: Histones neutralized AT-dependent anticoagulant function of heparin in both purified protease-inhibition and plasma-based assays. Histones also disrupted endothelial cell barrier-permeability function by a GAG-dependent mechanism as evidenced by the GAG-antagonist, surfen, abrogating their disruptive effects. Further studies revealed histones and AT compete for overlapping binding-sites on GAGs, thus increasing concentrations of one protein abrogated effects of the other. Histones elicited proapoptotic effects by inducing nuclear localization of PKC-δ in endothelial cells and barrier-disruptive effects by destabilizing VE-cadherin, which were inhibited by AT, but not by a D-helix mutant of AT incapable of interacting with GAGs. Finally, histones induced release of Weibel-Palade body contents, VWF and angiopoietin-2, and promoted expression of cell adhesion molecules on endothelial cells, which were all downregulated by AT but not by D-helix mutant of AT. CONCLUSION: We conclude that histones and AT compete for overlapping binding sites on vascular GAGs to modulate coagulation and inflammation.


Author(s):  
Jun Wan ◽  
Nadira Vadaq ◽  
Joke Konings ◽  
Martin Jaeger ◽  
Vinod Kumar ◽  
...  

2021 ◽  
Vol 67 (3) ◽  
pp. 87-99
Author(s):  
R.Yu. Marunych ◽  
◽  
O.V. Gornytska ◽  
A.V. Gudzenko ◽  
O.A. Salnyk ◽  
...  

The structure and functions of the endothelium under normal conditions and a number of pathologies are reviewed in this work with the focus on its role in maintaining the balance between pro- and anticoagulant function of blood in different vascular beds. The role of endothelium in the synthesis and secretion of NO and other vascular regulators is highlighted. The mechanisms of its dysfunction, the role and interconnection of pathological changes in diseases such as atherosclerosis and hypertension are described.


2021 ◽  
Author(s):  
Moh'd Mohanad Al-Dabet ◽  
Khurrum Shahzad ◽  
Ahmed Elwakiel ◽  
Alba Sulaj ◽  
Stefan Kopf ◽  
...  

A major therapeutic obstacle in diabetes mellitus is the metabolic or hyperglycemic memory: the persistence of impaired organ function despite improvement of blood glucose. Therapies reversing the hyperglycemic memory and thus improving already established organ-dysfunction are lacking, but urgently needed considering the increasing prevalence of diabetes mellitus worldwide. Here we show that glucose-mediated changes in gene expression largely persist in diabetic kidney disease (DKD) despite reversing hyperglycemia. The senescence-associated cyclin-dependent kinase inhibitor p21 (Cdkn1a) was the top hit among genes persistently induced by hyperglycemia and was associated with sustained induction of the p53-p21 pathway. Persistent p21 induction was confirmed in various animal models, in several independent human samples and in in vitro models. Tubular p21 expression and urinary p21-levels were associated with DKD severity and remained elevated despite improved blood glucose levels in humans, suggesting that p21 may be a biomarker indicating persistent (memorized) kidney damage. Glucose-mediated p21 induction and tubular senescence were enhanced in mice with reduced levels of the disease resolving protease activated protein C (aPC). Mechanistically, glucose-induced and sustained tubular p21 expression is linked with demethylation of its promoter and reduced DNMT1 expression. aPC reverses already established p21 expression independent of its anticoagulant function through receptor signaling. Accordingly, new pharmacological approaches specifically mimicking aPC signaling (3K3A-aPC, parmodulin-2) enabled the reversal of glucose-mediated sustained tubular p21 expression, tubular senescence, and DKD. Thus, p21-dependent tubular senescence contributes to the hyperglycemic memory but can be therapeutically targeted.


Author(s):  
Ihsan Gadi ◽  
Sameen Fatima ◽  
Ahmed Elwakiel ◽  
Sumra Nazir ◽  
Mohd Mohanad Al-Dabet ◽  
...  

Rationale: While thrombin is the key protease in thrombus formation, other coagulation proteases, such as fXa or activated protein C (aPC), independently modulate intracellular signaling via partially distinct receptors. Objective: To study the differential effects of fXa or fIIa inhibition on gene expression and inflammation in myocardial ischemia-reperfusion injury (IRI). Methods and Results: Mice were treated with a direct fIIa inhibitor (fIIai) or direct fXa inhibitor (fXai) at doses that induced comparable anticoagulant effects ex vivo and in vivo (tail bleeding assay and FeCl3-induced thrombosis). Myocardial IRI was induced via LAD ligation. We determined infarct size and in vivo aPC generation, analyzed gene expression by RNAseq, and performed immunoblotting and ELISA. The signaling-only 3K3A-aPC variant and inhibitory antibodies that blocked all or only the anticoagulant function of aPC were used to determine the role of aPC. Doses of fIIai and fXai that induced comparable anticoagulant effects resulted in a comparable reduction in infarct size. However, unbiased gene expression analyses revealed marked differences, including pathways related to sterile inflammation and inflammasome regulation. fXai but not fIIai inhibited sterile inflammation by reducing the expression of proinflammatory cytokines (IL-1beta, IL-6, and TNFalpha) as well as NF-κB and inflammasome activation. This anti-inflammatory effect was associated with reduced myocardial fibrosis 28 days post myocardial IRI. Mechanistically, in vivo aPC generation was higher with fXai than with fIIai. Inhibition of the anticoagulant and signaling properties of aPC abolished the anti-inflammatory effect associated with fXai, while inhibiting only the anticoagulant function of aPC had no effect. Combining 3K3A-aPC with fIIai reduced the inflammatory response, mimicking the fXai-associated effect. Conclusions: We showed that specific inhibition of coagulation via DOACs had differential effects on gene expression and inflammation, despite comparable anticoagulant effects and infarct sizes. Targeting individual coagulation proteases induces specific cellular responses unrelated to their anticoagulant effect.


2020 ◽  
Vol 327 ◽  
pp. 2-8 ◽  
Author(s):  
Lachlan A. Bourke ◽  
Nicholas J. Youngman ◽  
Christina N. Zdenek ◽  
Bianca op den Brouw ◽  
Aude Violette ◽  
...  

2020 ◽  
Vol 21 (7) ◽  
pp. 2519
Author(s):  
Yuji Nozaki ◽  
Jinhai Ri ◽  
Kenji Sakai ◽  
Kaoru Niki ◽  
Masanori Funauchi ◽  
...  

Thrombomodulin (TM) is a single transmembrane, multidomain glycoprotein receptor for thrombin, and is best known for its role as a cofactor in a clinically important natural anticoagulant pathway. In addition to its anticoagulant function, TM has well-defined anti-inflammatory properties. Soluble TM levels increase significantly in the plasma of septic patients; however, the possible involvement of recombinant human soluble TM (rTM) transduction in the pathogenesis of lipopolysaccharide (LPS)-induced nephrotoxicity, including acute kidney injury (AKI), has remained unclear. Mice were injected intraperitoneally with 15 mg/kg LPS. rTM (3 mg/kg) or saline was administered to the animals before the 3 and 24 h LPS-injection. At 24 and 48 h, blood urea nitrogen, the inflammatory cytokines in sera and kidney, and histological findings were assessed. Cell activation and apoptosis signal was assessed by Western blot analysis. In this study using a mouse model of LPS-induced AKI, we found that rTM attenuated renal damage by reducing both cytokine and cell activation and apoptosis signals with the accumulation of CD4+ T-cells, CD11c+ cells, and F4/80+ cells via phospho c-Jun activations and Bax expression. These findings suggest that the mechanism underlying these effects of TM may be mediated by a reduction in inflammatory cytokine production in response to LPS. These molecules might thereby provide a new therapeutic strategy in the context of AKI with sepsis.


2019 ◽  
Vol 17 (11) ◽  
pp. 1935-1949
Author(s):  
James T. B. Crawley ◽  
Argita Zalli ◽  
James H. Monkman ◽  
Anastasis Petri ◽  
David A. Lane ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document