Potential implications of vascular wall resident endothelial progenitor cells

2007 ◽  
Vol 98 (11) ◽  
pp. 930-939 ◽  
Author(s):  
Derya Tilki ◽  
Hans-Peter Hohn ◽  
Ursula Gehling ◽  
Nerbil Kilic ◽  
Süleyman Ergün

SummaryA rapidly increasing body of data suggests an essential role of endothelial progenitor cells (EPCs) in vascular regeneration, formation of new vessels in cardiovascular diseases and also in tumor vasculogenesis. Moreover, recent data obtained from clinical studies with anti-angiogenic drugs in tumor therapy or with pro-angiogenic stimuli in ischemic disorders implicate a predictive role of the number of EPCs circulating in the peripheral blood in monitoring of these diseases. However, there is still some controversial data regarding the relevance of the EPCs in vascular formation depending on models used and diseases studied. One of the essential prerequisites for a better understanding of the whole contribution of EPCs to vascular formation in adult, a process called postnatal vasculogenesis, is to identify their exact sources. We could recently discover the existence of EPCs in a distinct zone of the vascular wall of large and middle sized adult blood vessels and showed that these cells are capable to differentiate into mature endothelial cells, to form capillary sprouts in arterial ring assay and to build vasa vasorumlike structures within the vascular wall. They also can be mobilized very rapidly from the vascular wall by tumor cells. This review will discuss the functional implications of these vascular wall resident endothelial progenitor cells (VW-EPCs) in relation to those of EPCs circulating in peripheral blood or derived from the bone marrow in cardiovascular and neoplastic diseases.

2019 ◽  
Vol 392 (6) ◽  
pp. 669-683 ◽  
Author(s):  
Jolly Mounir William Labib ◽  
Sawsan Aboul-Fotouh ◽  
Mohamed Z. Habib ◽  
Mohamed Abd Elrahman Ahmed Mekawy ◽  
Kawthar A. Farrag ◽  
...  

2004 ◽  
Vol 173 (8) ◽  
pp. 5268-5274 ◽  
Author(s):  
Luigi Biancone ◽  
Vincenzo Cantaluppi ◽  
Debora Duò ◽  
Maria Chiara Deregibus ◽  
Carlo Torre ◽  
...  

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 937.1-937
Author(s):  
V. Pulito-Cueto ◽  
S. Remuzgo-Martínez ◽  
F. Genre ◽  
V. M. Mora-Cuesta ◽  
D. Iturbe Fernández ◽  
...  

Background:Interstitial lung disease (ILD) is one of the most significant comorbidities of rheumatoid arthritis (RA), increasing the mortality in these patients [1,2]. Although the pathogenesis of ILD associated to RA (RA-ILD+) remains poorly defined [1], it is known that vascular tissue plays a crucial role in lung physiology [3]. In this context, a population of cells termed endothelial progenitor cells (EPC) are involved in vasculogenesis and endothelial tissue repair [4]. Previous reports suggest the implication of EPC in different conditions such as RA and idiopathic pulmonary fibrosis (IPF), the most common and destructive ILD [5,6]. Nevertheless, little is known about their specific role in RA-ILD+.Objectives:The purpose of this study was to shed light on the potential role of EPC in endothelial damage in RA-ILD+.Methods:Peripheral venous blood was collected from a total of 68 individuals (18 with RA-ILD+, 17 with RA-ILD-, 19 with IPF and 14 healthy controls). All subjects were recruited from the Rheumatology and Pneumology departments of Hospital Universitario Marqués de Valdecilla, Santander, Spain. Quantification of EPC was analyzed by the expression of surface antigens by flow cytometry. The combination of antibodies against the stem cell marker CD34, the immature progenitor marker CD133, the endothelial marker VEGF receptor 2 (CD309) and the common leukocyte antigen CD45 was used. EPC were considered as CD34+, CD45Low, CD309+and CD133+. All statistical analyses were performed using Prism software 5 (GraphPad).Results:EPC frequency was significantly increased in patients with RA-ILD+, RA-ILD-and IPF compared to controls (p=0.001, p=0.002, p< 0.0001, respectively). Nevertheless, patients with RA, both RA-ILD+and RA-ILD-, showed a lower frequency of EPC than those with IPF (p= 0.048, p= 0.006, respectively).Conclusion:Our results provide evidence for a potential role of EPC as a reparative compensatory mechanism related to endothelial damage in RA-ILD+, RA-ILD-and IPF patients. Interestingly, EPC frequency may help to establish a differential diagnostic between patients with IPF and those who have an underlying autoimmune disease (RA-ILD+).References:[1] J Clin Med 2019; 8: 2038;[2] Arthritis Rheumatol 2015; 67: 28-38;[3] Nat Protoc 2015; 10: 1697-1708;[4] Science 1997; 275: 964-966;[5] Rheumatology (Oxford) 2012; 51: 1775-1784;[6] Angiogenesis 2013; 16: 147-157.Acknowledgments:Personal funds, VP-C: PREVAL18/01 (IDIVAL); SR-M: RD16/0012/0009 (ISCIII-ERDF); LL-G: PI18/00042 (ISCIII-ERDF); RL-M: Miguel Servet type I CP16/00033 (ISCIII-ESF).Disclosure of Interests:Verónica Pulito-Cueto: None declared, Sara Remuzgo-Martínez: None declared, Fernanda Genre: None declared, Victor Manuel Mora-Cuesta: None declared, David Iturbe Fernández: None declared, Sonia Fernández-Rozas: None declared, Leticia Lera-Gómez: None declared, Pilar Alonso Lecue: None declared, Javier Rodriguez Carrio: None declared, Belén Atienza-Mateo: None declared, Virginia Portilla: None declared, David Merino: None declared, Ricardo Blanco Grant/research support from: AbbVie, MSD, Roche, Consultant of: Abbvie, Eli Lilly, Pfizer, Roche, Bristol-Myers, Janssen, UCB Pharma and MSD, Speakers bureau: Abbvie, Eli Lilly, Pfizer, Roche, Bristol-Myers, Janssen, UCB Pharma. MSD, Alfonso Corrales Speakers bureau: Abbvie, Jose Manuel Cifrián-Martínez: None declared, Raquel López-Mejías: None declared, Miguel A González-Gay Grant/research support from: Pfizer, Abbvie, MSD, Speakers bureau: Pfizer, Abbvie, MSD


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1152
Author(s):  
Alberto Polo-Montalvo ◽  
Laura Casarrubios ◽  
María Concepción Serrano ◽  
Adrián Sanvicente ◽  
María José Feito ◽  
...  

Due to their specific mesoporous structure and large surface area, mesoporous bioactive glasses (MBGs) possess both drug-delivery ability and effective ionic release to promote bone regeneration by stimulating osteogenesis and angiogenesis. Macrophages secrete mediators that can affect both processes, depending on their phenotype. In this work, the action of ion release from MBG-75S, with a molar composition of 75SiO2-20CaO-5P2O5, on osteogenesis and angiogenesis and the modulatory role of macrophages have been assessed in vitro with MC3T3-E1 pre-osteoblasts and endothelial progenitor cells (EPCs) in monoculture and in coculture with RAW 264.7 macrophages. Ca2+, phosphorous, and silicon ions released from MBG-75S were measured in the culture medium during both differentiation processes. Alkaline phosphatase activity and matrix mineralization were quantified as the key markers of osteogenic differentiation in MC3T3-E1 cells. The expression of CD31, CD34, VEGFR2, eNOS, and vWF was evaluated to characterize the EPC differentiation into mature endothelial cells. Other cellular parameters analyzed included the cell size and complexity, intracellular calcium, and intracellular content of the reactive oxygen species. The results obtained indicate that the ions released by MBG-75S promote osteogenesis and angiogenesis in vitro, evidencing a macrophage inhibitory role in these processes and demonstrating the high potential of MBG-75S for the preparation of implants for bone regeneration.


2010 ◽  
Vol 93 (1) ◽  
pp. 123-125 ◽  
Author(s):  
Takashi Kimura ◽  
Hirao Kohno ◽  
Yoshikazu Matsuoka ◽  
Ryusuke Nakatsuka ◽  
Yutaka Sasaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document