scholarly journals Gall-inducing arthropods in a Neotropical savanna area in the EPA of Rio Pandeiros (Bonito de Minas, MG, Brazil): effects of plant species richness and super-host abundance

2020 ◽  
Vol 60 ◽  
pp. e20206032
Author(s):  
Walter Santos de Araújo ◽  
Kelly Christie dos Santos Costa ◽  
Luana Teixeira Silveira ◽  
Érica Vanessa Durães de Freitas ◽  
Yule Roberta Ferreira Nunes ◽  
...  

Several plant-related factors can influence the diversity of gall-inducing species communities. In the present study we performed an inventory of gall-inducing arthropods and we tested if the plant species richness and the abundance of super-host plants (Copaifera oblongifolia) influenced positively in the diversity of gall-inducing arthropod species. The study was realized in an area of Neotropical savanna (cerrado sensu stricto) in the Environmental Protection Area (EPA) of Rio Pandeiros, Minas Gerais, Brazil. Host-plant species and gall-inducing arthropods were sampled in 18 10 × 10 m plots distributed in the vegetation. In total we found 40 arthropod gall morphotypes, distributed on 17 botanical families and 29 plant species. Cecidomyiidae (Diptera) induced the most arthropod galls (85%), and the plant family Fabaceae had the greatest richness of gall morphotypes (16). The plant species Copaifera oblongifolia and Andira humilis (Fabaceae) were the most important host species with five and three morphotypes, respectively. Galling species richness was not affected by none of explanatory variables (plant species richness and abundance of super-host plants). On the other hand, galling species per plant species was negatively affected by plant species richness and positively affected by abundance of super-host plants. This is the first study of arthropod-induced galls conducted in EPA of Rio Pandeiros, Brazil. Our results corroborate previous studies that highlight the importance of super-host plants for galling arthropod diversity on a local scale.

Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 369 ◽  
Author(s):  
Araújo ◽  
Moreira ◽  
Falcão ◽  
Borges ◽  
Fagundes ◽  
...  

Host plants may harbor a variable number of galling insect species, with some species being able to harbor a high diversity of these insects, being therefore called superhost plants. In the present study, we tested the hypothesis that the occurrence of superhost plant species of genus Qualea (Vochysiaceae) affects the structure of plant–galling insect ecological networks in Brazilian Cerrado. We sampled a total of 1882 plants grouped in 131 species and 43 families, of which 64 species and 31 families of host plants hosted 112 galling insect species. Our results showed that occurrence of superhosts of genus Qualea increased the linkage density of plant species, number of observed interactions, and the size of plant–galling insect networks and negatively affected the network connectance (but had no effect on the residual connectance). Although the occurrence of Qualea species did not affect the plant species richness, these superhosts increased the species richness and the number of interactions of galling insects. Our study represents a step forward in relation to previous studies that investigated the effects of plant diversity on the plant–insect networks, showing that few superhost plant species alter the structure of plant–herbivore networks, even without having a significant effect on plant diversity.


2016 ◽  
Author(s):  
Kai Zhang ◽  
Siliang Lin ◽  
Yinqiu Ji ◽  
Chenxue Yang ◽  
Xiaoyang Wang ◽  
...  

AbstractPlant diversity surely determines arthropod diversity, but only moderate correlations between arthropod and plant species richness had been observed until Basset et al. (2012, Science 338: 1481-1484) finally undertook an unprecedentedly comprehensive sampling of a tropical forest and demonstrated that plant species richness could indeed accurately predict arthropod species richness. We now require a high-throughput pipeline to operationalize this result so that we can (1) test competing explanations for tropical arthropod megadiversity, (2) improve estimates of global eukaryotic species diversity, and (3) use plant and arthropod communities as efficient proxies for each other, thus improving the efficiency of conservation planning and of detecting forest degradation and recovery. We therefore applied metabarcoding to Malaise-trap samples across two tropical landscapes in China. We demonstrate that plant species richness can accurately predict arthropod (mostly insect) species richness and that plant and insect community compositions are highly correlated, even in landscapes that are large, heterogeneous, and anthropogenically modified. Finally, we review how metabarcoding makes feasible highly replicated tests of the major competing explanations for tropical megadiversity.


Sign in / Sign up

Export Citation Format

Share Document