scholarly journals Protein kinase C and calcium channel activation as determinants of renal vasoconstriction by angiotensin II and endothelin.

1993 ◽  
Vol 73 (4) ◽  
pp. 743-750 ◽  
Author(s):  
T Takenaka ◽  
H Forster ◽  
M Epstein
2009 ◽  
Vol 85 (3) ◽  
pp. 614-621 ◽  
Author(s):  
Jin Song ◽  
Kathleen M. Eyster ◽  
Curtis K. Kost ◽  
Barton Kjellsen ◽  
Douglas S. Martin

1990 ◽  
Vol 259 (3) ◽  
pp. C421-C426 ◽  
Author(s):  
H. Scholz ◽  
A. Kurtz

In this study we have examined the subcellar pathways along which angiotensin II (ANG II) causes renal vasoconstriction. Using the isolated perfused rat kidney model, we found that renal vasoconstriction produced by ANG II (100 pM) was not altered by the calmodulin antagonists calmidazolium (1 microM) and N-(6-aminohexyl)-5-chloro-1-naphthalensulfonamide (W-7, 10 microM) but was blunted by staurosporine (100 nM) and 1-(5-isoquinolinylsulfonyl)-2-methyl-piperazine (H-7, 50 microM), two structurally distinct putative protein kinase C inhibitors. The phorbol ester 4 alpha-phorbol 12,13-didecanoate (1-100 nM) did not alter renal vascular resistance, whereas phorbol 12-myristate 13-acetate (PMA, 1-100 nM) caused potent and dose-dependent vasoconstriction that was prevented by staurosporine (100 nM) and H-7 (50 microM). The vasoconstrictory effects of ANG II and PMA were attenuated by the calcium channel blockers verapamil (5 microM) and nifedipine (5 microM) and were reversibly inhibited when cobaltous chloride (2 mM) was added to the perfusate. Taken together, our findings support the concept that the renal vasoconstrictory effect of ANG II is essentially mediated by protein kinase C activation, which either requires or enhances the entrance of extracellular calcium.


1990 ◽  
Vol 122 (3) ◽  
pp. 403-408
Author(s):  
Ph. Touraine ◽  
P. Birman ◽  
F. Bai-Grenier ◽  
C. Dubray ◽  
F. Peillon ◽  
...  

Abstract In order to investigate whether a calcium channel blocker could modulate the protein kinase C activity in normal and estradiol pretreated rat pituitary, female Wistar rats were treated or not (controls) with ± PN 200-110 (3 mg · kg−1 · day−1, sc) for 8 days or with estradiol cervical implants for 8 or 15 days, alone or in combination with PN 200-110 the last 8 days. Estradiol treatment induced a significant increase in plasma prolactin levels and pituitary weight. PN 200-110 administered to normal rats did not modify these parameters, whereas it reduced the effects of the 15 days estradiol treatment on prolactin levels (53.1 ± 4.9 vs 95.0 ±9.1 μg/l, p<0.0001) and pituitary weight (19.9 ± 0.4 vs 23.0 ± 0.6 mg, p <0.001), to values statistically comparable to those measured after 8 days of estradiol treatment. PN 200-110 alone did not induce any change in protein kinase C activity as compared with controls. In contrast, PN 200-110 treatment significantly counteracted the large increase in soluble activity and the decrease in the particulate one induced by estradiol between day 8 and day 15. We conclude that PN 200-110 opposed the stimulatory effects of chronic in vivo estradiol treatment on plasma prolactin levels and pituitary weight and that this regulation was related to a concomitant modulation of the protein kinase C activity.


Sign in / Sign up

Export Citation Format

Share Document