Abstract 12568: Impact of Aortic Stenosis on Myofiber Stress: Translational Application of Left Ventricle-Aortic Coupling Simulations

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Andrew D Wisneski ◽  
Yunjie Wang ◽  
Reza Salari ◽  
Steve Levine ◽  
Jiang Yao ◽  
...  

Introduction: Grading aortic stenosis (AS) has traditionally relied on measuring hemodynamic parameters of transvalvular pressure gradient, ejection jet velocity, or estimating valve orifice area. Recent research has highlighted limitations of these criteria at effectively grading AS in presence of left ventricle (LV) dysfunction. We hypothesize that simulations coupling the aorta and LV will provide meaningful insight into myocardial biomechanical derangements that accompany AS. Reference data from the normal ventricle should first be obtained. Methods: A multi-domain cardiac model with representative anatomy and material properties was used to create AS simulations. Finite element analysis was performed with ABAQUS FEA®. An anisotropic hyperelastic model was assigned to the aorta and LV passive properties, while time-varying elastance function governed LV active response. Mild and severe AS were created by restricting the aortic valve orifice area. Results: Global LV myofiber end systolic (ES) stress (mean±SD) was 9.31±10.33 kPa at baseline (no AS), 13.13±10.29 kPa for mild AS, and 16.18±10.59 kPa with severe AS. Mean LV myofiber ES strains were -22.4±8.7%, -22.2±8.9%, and -21.9±9.2%, respectively. Mild and severe AS had significant stress elevation compared to baseline (mild AS vs base; p<0.01, severe AS vs base; p<0.001) and when compared to each other (p<0.01). See Figure 1 . Ventricular regions that experienced greatest magnitude ES stress were (severe AS vs baseline) basal inferior (39.87±14.73 vs 30.02±12.08 kPa; p<0.01), mid-anteroseptal (32.29±11.56 vs 24.79±12.00 kPa; p<0.001), and apex (27.99±8.44 vs 23.52±10.19 kPa; p<0.001). Conclusions: Isolated AS in a normal heart was simulated, and significantly elevated LV myofiber stress was quantified. This data serves as a comparison to future studies that will incorporate patient-specific ventricular geometries and material parameters, aiming to correlate LV biomechanics to AS severity.

1989 ◽  
Vol 18 (1) ◽  
pp. 36-47 ◽  
Author(s):  
Richard Schoephoerster ◽  
Thomas L. Yearwood ◽  
Krishnan B. Chandran

2004 ◽  
Vol 77 (3) ◽  
pp. 844-851 ◽  
Author(s):  
Vangipuram Canchi Sripathi ◽  
Ramarathnam Krishna Kumar ◽  
Komarakshi R Balakrishnan

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Sumeet S Mitter ◽  
Gregory J Wagner ◽  
Alex J Barker ◽  
Michael Markl ◽  
James D Thomas

Introduction: Hydrodynamic theory predicts fluid approaches a point orifice with accelerating velocity in hemispheric shells, forming the basis for the proximal isovelocity surface area (PISA) method to quantify valve regurgitation. Previous CFD and in vitro work has shown that with a finite, non-point orifice, there is a small, systematic underestimation of flow that is approximately the ratio of contour velocity (va) to maximal orifice velocity (vo), e.g., roughly an 8% error if a 40 cm/s contour is used with a 5 m/s jet. The PISA method is further questioned in the setting of noncircular orifices, with concerns of further underestimation. We sought to quantify this impact with CFD. Hypothesis: Application of standard PISA analysis to an elliptical orifice leads to further flow underestimation, but the magnitude is negligible. Methods: Mathematical modeling of flow through a finite elliptical orifice was computed using the open-source incompressible flow solver Nalu. Forty-five permutations of valve flow were characterized by varying valve orifice area (0.1, 0.3 and 0.5 cm^2), ellipse axis ratios (1:1, 2:1, 3:1, 5:1, and 10:1), and max velocity (400, 500 and 600 cm/s). Computed hemispherical flow contours scaled to true orifice flow (Qc/Qo) and scaled computed area to true orifice area (Ac/Ao) were plotted against distance from the orifice scaled to a circular orifice with equivalent orifice area. Results: Qc/Qo and Ac/Ao for each ellipse axis ratio when plotted against normalized orifice distance produced the same curves for each permutation of valve orifice area and max velocity. Plotting Qc/Qo (or Ac/Ao) against va/vo reveals marginal underestimation of flow with physiologic elliptical axis ratios of 2:1 and 3:1 against a circular orifice with axis ratios of 1:1 (Figure 1). Conclusions: The added error in using PISA to approximate flow through an elliptical mitral valve orifice area is minimal compared to traditional assumptions of a circular mitral valve orifice.


Circulation ◽  
1992 ◽  
Vol 85 (6) ◽  
pp. 2275-2283 ◽  
Author(s):  
H Baumgartner ◽  
S S Khan ◽  
M DeRobertis ◽  
L S Czer ◽  
G Maurer

Sign in / Sign up

Export Citation Format

Share Document