Abstract 3200: Comparison of CT Perfusion Mismatch with Perfusion-Diffusion MRI in Ischemic Stroke - a Reliable Alternative?

Stroke ◽  
2012 ◽  
Vol 43 (suppl_1) ◽  
Author(s):  
Bruce C Campbell ◽  
Søren Christensen ◽  
Christopher R Levi ◽  
Patricia M Desmond ◽  
Geoffrey A Donnan ◽  
...  

Background and purpose: CT-perfusion (CTP) is widely and rapidly accessible for imaging acute ischemic stroke. However, there has been limited validation of CTP parameters against the more intensively studied MRI perfusion-diffusion mismatch paradigm. We tested the correspondence of CTP with contemporaneous perfusion-diffusion MRI. Methods: Acute ischemic stroke patients <6hr after onset had CTP and perfusion-diffusion MRI within 1hr, before reperfusion therapies. Relative cerebral blood flow (relCBF) and time-to-peak of the deconvolved tissue-residue-function (Tmax) were calculated (standard singular value decomposition deconvolution). The diffusion lesion was registered to the CTP slabs and manually outlined to its maximal visual extent. CT-infarct core was defined as relCBF<31% contralateral mean as previously published using this software. The volumetric accuracy of relCBF core compared to the diffusion lesion was tested in isolation, but also when restricted to pixels with relative time-to-peak (TTP) >4sec, to reduce artifactual false positive low CBF (eg in leukoaraiosis). The MR Tmax>6sec perfusion lesion (previously validated to define penumbral tissue at risk of infarction) was automatically segmented and registered to the CTP slabs. Receiver operating characteristic (ROC) analysis determined the optimal CT-Tmax threshold to match MR-Tmax>6sec, confidence intervals generated by bootstrapping. Agreement of these CT parameters with MR perfusion-diffusion mismatch on co-registered slabs was assessed (mismatch ratio >1.2, absolute mismatch>10mL, infarct core<70mL). Results: In analysis of 98 CTP slabs (54 patients, median onset to CT 190min, median CT to MR 30min), volumetric agreement with the diffusion lesion was substantially improved by constraining relCBF<31% within the automated TTP perfusion lesion ROI (median magnitude of volume difference 9.0mL vs unconstrained 13.9mL, p<0.001). ROC analysis demonstrated the best CT-Tmax threshold to match MR-Tmax>6sec was 6.2sec (95% confidence interval 5.6-7.3sec, ie not significantly different to 6sec), sensitivity 91%, specificity 70%, AUC 0.87. Using CT-Tmax>6s “penumbra” and relCBF<31% (restricted to TTP>4s) “core”, volumetric agreement was sufficient for 90% concordance between CT and MRI-based mismatch status (kappa 0.80). Conclusions: Automated CTP mismatch classification using relCBF and Tmax is similar to perfusion-diffusion MRI. CTP may allow more widespread application of the “mismatch” paradigm in clinical practice and trials.

Stroke ◽  
2013 ◽  
Vol 44 (suppl_1) ◽  
Author(s):  
Bruce C Campbell ◽  
Søren Christensen ◽  
Nawaf Yassi ◽  
Gagan Sharma ◽  
Andrew Bivard ◽  
...  

Background and purpose: CT perfusion (CTP) provides rapid and accessible imaging of ischemic stroke pathophysiology. Studies with limited brain coverage CTP have suggested that relative cerebral blood flow (relCBF) is the optimal CTP parameter to define irreversible infarction. We analyzed patients with whole brain CT perfusion and contemporaneous MR perfusion-diffusion imaging to confirm the optimal CTP parameter for infarct core and compare mismatch classification between MR and CT. Methods: Acute ischemic stroke patients <6hr after onset had whole brain CTP (320slice) closely followed by perfusion-diffusion MRI. Maps of CBF, CBV and time-to-peak of the deconvolved tissue residue function (Tmax) were generated by RAPID automated perfusion analysis software (Stanford University) using delay insensitive deconvolution. The optimal CTP map to identify infarct core was selected by maximizing the average Dice co-efficient across the same threshold range for all patients using co-registered diffusion lesion (manually outlined to its maximal visual extent) as reference region. Mismatch classification agreement between CT and MRI was then assessed using 2 definitions: mismatch ratio a) >1.2 or b) >1.8, absolute mismatch a) >10mL or b) >15mL, infarct core<70mL. Results: In 28 patients imaged <6hr from stroke onset (median age 69, median onset to CT 180min, median CT to MR 69min), relCBF provided the most accurate estimate for infarct core, significantly better than absolute or relative CBV (both p<0.001). Using relCBF to generate acute CTP infarct core volumes, the median magnitude of volume difference versus diffusion MR was 6.9mL, interquartile range 1.6-27.4mL. CTP mismatch between relCBF core and Tmax>6sec perfusion lesion was assessed in 25 patients (3/28 had no MR perfusion). CTP and MR perfusion-diffusion mismatch classification agreed in 23/25 (92%) patients (kappa 0.84) using either definition. Conclusions: This study using whole brain CTP confirms the greater accuracy of CBF over CBV for estimation of the infarct core. The >90% agreement in mismatch classification between CTP and MRI supports the concept that both modalities can identify similar patient populations for clinical trials of reperfusion therapies.


Stroke ◽  
2011 ◽  
Vol 42 (12) ◽  
pp. 3435-3440 ◽  
Author(s):  
Bruce C.V. Campbell ◽  
Søren Christensen ◽  
Christopher R. Levi ◽  
Patricia M. Desmond ◽  
Geoffrey A. Donnan ◽  
...  

Background and Purpose— CT perfusion (CTP) is widely and rapidly accessible for imaging acute ischemic stroke but has limited validation. Cerebral blood volume (CBV) has been proposed as the best predictor of infarct core. We tested CBV against other common CTP parameters using contemporaneous diffusion MRI. Methods— Patients with acute ischemic stroke <6 hours after onset had CTP and diffusion MRI <1 hour apart, before any reperfusion therapies. CTP maps of time to peak (TTP), absolute and relative CBV, cerebral blood flow (CBF), mean transit time (MTT), and time to peak of the deconvolved tissue residue function (Tmax) were generated. The diffusion lesion was manually outlined to its maximal visual extent. Receiver operating characteristic (ROC) analysis area under the curve (AUC) was used to quantify the correspondence of each perfusion parameter to the coregistered diffusion-weighted imaging lesion. Optimal thresholds were determined (Youden index). Results— In analysis of 98 CTP slabs (54 patients, median onset to CT 190 minutes, median CT to MR 30 minutes), relative CBF performed best (AUC, 0.79; 95% CI, 0.77–81), significantly better than absolute CBV (AUC, 0.74; 95% CI, 0.73–0.76). The optimal threshold was <31% of mean contralateral CBF. Specificity was reduced by low CBF/CBV in noninfarcted white matter in cases with reduced contrast bolus intensity and leukoaraiosis. Conclusions— In contrast to previous reports, CBF corresponded with the acute diffusion-weighted imaging lesion better than CBV, although no single threshold avoids detection of false-positive regions in unaffected white matter. This relates to low signal-to-noise ratio in CTP maps and emphasizes the need for optimized acquisition and postprocessing.


2020 ◽  
pp. 028418512098177
Author(s):  
Yu Lin ◽  
Nannan Kang ◽  
Jianghe Kang ◽  
Shaomao Lv ◽  
Jinan Wang

Background Color-coded multiphase computed tomography angiography (mCTA) can provide time-variant blood flow information of collateral circulation for acute ischemic stroke (AIS). Purpose To compare the predictive values of color-coded mCTA, conventional mCTA, and CT perfusion (CTP) for the clinical outcomes of patients with AIS. Material and Methods Consecutive patients with anterior circulation AIS were retrospectively reviewed at our center. Baseline collateral scores of color-coded mCTA and conventional mCTA were assessed by a 6-point scale. The reliabilities between junior and senior observers were assessed by weighted Kappa coefficients. Receiver operating characteristic (ROC) curves and multivariate logistic regression model were applied to evaluate the predictive capabilities of color-coded mCTA and conventional mCTA scores, and CTP parameters (hypoperfusion and infarct core volume) for a favorable outcome of AIS. Results A total of 138 patients (including 70 cases of good outcomes) were included in our study. Patients with favorable prognoses were correlated with better collateral circulations on both color-coded and conventional mCTA, and smaller hypoperfusion and infarct core volume (all P < 0.05) on CTP. ROC curves revealed no significant difference between the predictive capability of color-coded and conventional mCTA ( P = 0.427). The predictive value of CTP parameters tended to be inferior to that of color-coded mCTA score (all P < 0.001). Both junior and senior observers had consistently excellent performances (κ = 0.89) when analyzing color-coded mCTA maps. Conclusion Color-coded mCTA provides prognostic information of patients with AIS equivalent to or better than that of conventional mCTA and CTP. Junior radiologists can reach high diagnostic accuracy when interpreting color-coded mCTA images.


2021 ◽  
pp. neurintsurg-2021-017510
Author(s):  
Arne Potreck ◽  
Fatih Seker ◽  
Matthias Anthony Mutke ◽  
Charlotte Sabine Weyland ◽  
Christian Herweh ◽  
...  

ObjectivesAutomated CT perfusion mismatch assessment is an established treatment decision tool in acute ischemic stroke. However, the reliability of this method in patients with head motion is unclear. We therefore sought to evaluate the influence of head movement on automated CT perfusion mismatch evaluation.MethodsUsing a realistic CT brain-perfusion-phantom, 7 perfusion mismatch scenarios were simulated within the left middle cerebral artery territory. Real CT noise and artificial head movement were added. Thereafter, ischemic core, penumbra volumes and mismatch ratios were evaluated using an automated mismatch analysis software (RAPID, iSchemaView) and compared with ground truth simulated values.ResultsWhile CT scanner noise alone had only a minor impact on mismatch evaluation, a tendency towards smaller infarct core estimates (mean difference of −5.3 (−14 to 3.5) mL for subtle head movement and −7.0 (−14.7 to 0.7) mL for strong head movement), larger penumbral estimates (+9.9 (−25 to 44) mL and +35 (−14 to 85) mL, respectively) and consequently larger mismatch ratios (+0.8 (−1.5 to 3.0) for subtle head movement and +1.9 (−1.3 to 5.1) for strong head movement) were noted in dependence of patient head movement.ConclusionsMotion during CT perfusion acquisition influences automated mismatch evaluation. Potentially treatment-relevant changes in mismatch classifications in dependence of head movement were observed and occurred in favor of mechanical thrombectomy.


2020 ◽  
Vol 132 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Neil Haranhalli ◽  
Nnenna Mbabuike ◽  
Sanjeet S. Grewal ◽  
Tasneem F. Hasan ◽  
Michael G. Heckman ◽  
...  

OBJECTIVEThe role of CT perfusion (CTP) in the management of patients with acute ischemic stroke (AIS) remains a matter of debate. The primary aim of this study was to evaluate the correlation between the areas of infarction and penumbra on CTP scans and functional outcome in patients with AIS.METHODSThis was a retrospective review of 100 consecutively treated patients with acute anterior circulation ischemic stroke who underwent CT angiography (CTA) and CTP at admission between February 2011 and October 2014. On CTP, the volume of ischemic core and penumbra was measured using the Alberta Stroke Program Early CT Score (ASPECTS). CTA findings were also noted, including the site of occlusion and regional leptomeningeal collateral (rLMC) score. Functional outcome was defined by modified Rankin Scale (mRS) score obtained at discharge. Associations of CTP and CTA parameters with mRS scores at discharge were assessed using multivariable proportional odds logistic regression models.RESULTSThe median age was 67 years (range 19–95 years), and the median NIH Stroke Scale score was 16 (range 2–35). In a multivariable analysis adjusting for potential confounding variables, having an infarct on CTP scans in the following regions was associated with a worse mRS score at discharge: insula ribbon (p = 0.043), perisylvian fissure (p < 0.001), motor strip (p = 0.007), M2 (p < 0.001), and M5 (p = 0.023). A worse mRS score at discharge was more common in patients with a greater volume of infarct core (p = 0.024) and less common in patients with a greater rLMC score (p = 0.004).CONCLUSIONSThe results of this study provide evidence that several CTP parameters are independent predictors of functional outcome in patients with AIS and have potential to identify those patients most likely to benefit from reperfusion therapy in the treatment of AIS.


Neurosurgery ◽  
2006 ◽  
Vol 58 (3) ◽  
pp. E588-E588 ◽  
Author(s):  
Elad I. Levy ◽  
Robert D. Ecker ◽  
Ricardo A. Hanel ◽  
Eric Sauvageau ◽  
J Christopher Wehman ◽  
...  

Abstract OBJECTIVE AND IMPORTANCE: Acute ischemic stroke is the third leading cause of death in the United States. For patients with NIHSS scores &gt;10 and evaluated within 6 hours, intra-arterial thrombolysis is the treatment of choice. The Merci retriever (Concentric Medical Inc., Mountain View, CA) and IV TPA are currently the only FDA-approved treatments for acute ischemic stroke. For patients who do not meet the criteria for TPA administration and/or in whom the Merci device fails, options are limited. Intracranial stenting for acute ischemic stroke after failed thrombolysis is now possible because of improved delivery systems and appropriately sized stents. CLINICAL PRESENTATION: A 26-year-old woman presented with an NIHSS score of 11 (right-sided hemiparesis and mixed aphasia) 4 hours from the time of symptom onset. CT perfusion demonstrated increased time to peak in the entire left hemisphere; conventional angiography demonstrated a left M1 occlusion. INTERVENTION: After crossing the occlusion with a microcatheter, reteplase (2 units) was administered into the clot. Mechanical thrombolysis was then attempted, without restoration of flow. Two 3 × 12-mm coronary stents were placed from the M1 into the superior and inferior divisions, respectively, with complete restoration of flow (TIMI 3). Within 72 hours, the patient had an NIHSS score of 1, with a small infarction in the external capsule. CONCLUSION: Novel stroke interventions need to be developed for patients with acute ischemic stroke in whom traditional interventions fail. We present (to our knowledge) the first case of successful revascularization of an acute M1 occlusion accomplished with placement of two coronary stents.


2018 ◽  
Vol 53 (1) ◽  
pp. 25-30 ◽  
Author(s):  
Crt Langel ◽  
Katarina Surlan Popovic

Abstract Background Intravenous thrombolysis (IVT) is the method of choice in reperfusion treatment of patients with signs and symptoms of acute ischemic stroke (AIS) lasting less than 4.5 hours. Hemorrhagic transformation (HT) of acute ischemic stroke is a serious complication of IVT and occurs in 4.5–68.0% of clinical cases. The aim of our study was to determine the infarct core CT perfusion parameter (CTPP) most predictive of HT. Patients and methods Seventy-five patients with AIS who had undergone CT perfusion (CTP) imaging and were treated with IVT were enrolled in this retrospective study. Patients with and without HT after IVT were defined as cases and controls, respectively. Controls were found by matching for time from AIS symptom onset to IVT ± 0.5 h. The following CTPPs were measured: cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), relative CBF (rCBF) and relative CBV (rCBV). Receiver operating characteristic analysis curves of significant CTPPs determined cut-off values that best predict HT. Results There was a significant difference between cases and controls for CBF (p = 0.004), CBV (p = 0.009), rCBF (p < 0.001) and rCBV (p = 0.001). Receiver operating characteristic analysis revealed that rCBF < 4.5% of the contralateral mean (area under the curve = 0.736) allowed prediction of HT with a sensitivity of 71.0% and specificity of 52.5%. Conclusions CTP imaging has a considerable role in HT prediction, assisting in selection of patients that are likely to benefit from IVT. rCBF proved to have the highest HT predictive value.


2021 ◽  
Author(s):  
Umberto A. Gava ◽  
Federico D’Agata ◽  
Enzo Tartaglione ◽  
Marco Grangetto ◽  
Francesca Bertolino ◽  
...  

AbstractPurposeIn this study we investigate whether a Convolutional Neural Network (CNN) can generate clinically relevant parametric maps from CT perfusion data in a clinical setting of patients with acute ischemic stroke.MethodsTraining of the CNN was done on a subset of 100 perfusion data, while 15 samples were used as validation. All the data used for the training/validation of the network and to generate ground truth (GT) maps, using a state-of-the-art deconvolution-algorithm, were previously pre-processed using a standard pipeline. Validation was carried out through manual segmentation of infarct core and penumbra on both CNN-derived maps and GT maps. Concordance among segmented lesions was assessed using the Dice and the Pearson correlation coefficients across lesion volumes.ResultsMean Dice scores from two different raters and the GT maps were > 0.70 (good-matching). Inter-rater concordance was also high and strong correlation was found between lesion volumes of CNN maps and GT maps (0.99, 0.98).ConclusionOur CNN-based approach generated clinically relevant perfusion maps that are comparable to state-of-the-art perfusion analysis methods based on deconvolution of the data. Moreover, the proposed technique requires less information to estimate the ischemic core and thus might allow the development of novel perfusion protocols with lower radiation dose.


Sign in / Sign up

Export Citation Format

Share Document