Abstract 165: Automated Stroke-Related Information Extraction From Diagnostic Imaging Reports Using Natural Language Processing

Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Zhongyu Anna Liu ◽  
Muhammad Mamdani ◽  
Richard Aviv ◽  
Chloe Pou-Prom ◽  
Amy Yu

Introduction: Diagnostic imaging reports contain important data for stroke surveillance and clinical research but converting a large amount of free-text data into structured data with manual chart abstraction is resource-intensive. We determined the accuracy of CHARTextract, a natural language processing (NLP) tool, to extract relevant stroke-related attributes from full reports of computed tomograms (CT), CT angiograms (CTA), and CT perfusion (CTP) performed at a tertiary stroke centre. Methods: We manually extracted data from full reports of 1,320 consecutive CT/CTA/CTP performed between October 2017 and January 2019 in patients presenting with acute stroke. Trained chart abstractors collected data on the presence of anterior proximal occlusion, basilar occlusion, distal intracranial occlusion, established ischemia, haemorrhage, the laterality of these lesions, and ASPECT scores, all of which were used as a reference standard. Reports were then randomly split into a training set (n= 921) and validation set (n= 399). We used CHARTextract to extract the same attributes by creating rule-based information extraction pipelines. The rules were human-defined and created through an iterative process in the training sample and then validated in the validation set. Results: The prevalence of anterior proximal occlusion was 12.3% in the dataset (n=86 left, n=72 right, and n=4 bilateral). In the training sample, CHARTextract identified this attribute with an overall accuracy of 97.3% (PPV 84.1% and NPV 99.4%, sensitivity 95.5% and specificity 97.5%). In the validation set, the overall accuracy was 95.2% (PPV 76.3% and NPV 98.5%, sensitivity 90.0% and specificity 96.0%). Conclusions: We showed that CHARTextract can identify the presence of anterior proximal vessel occlusion with high accuracy, suggesting that NLP can be used to automate the process of data collection for stroke research. We will present the accuracy of CHARTextract for the remaining neurological attributes at ISC 2020.

2020 ◽  
Author(s):  
Maciej Rybinski ◽  
Xiang Dai ◽  
Sonit Singh ◽  
Sarvnaz Karimi ◽  
Anthony Nguyen

BACKGROUND The prognosis, diagnosis, and treatment of many genetic disorders and familial diseases significantly improve if the family history (FH) of a patient is known. Such information is often written in the free text of clinical notes. OBJECTIVE The aim of this study is to develop automated methods that enable access to FH data through natural language processing. METHODS We performed information extraction by using transformers to extract disease mentions from notes. We also experimented with rule-based methods for extracting family member (FM) information from text and coreference resolution techniques. We evaluated different transfer learning strategies to improve the annotation of diseases. We provided a thorough error analysis of the contributing factors that affect such information extraction systems. RESULTS Our experiments showed that the combination of domain-adaptive pretraining and intermediate-task pretraining achieved an F1 score of 81.63% for the extraction of diseases and FMs from notes when it was tested on a public shared task data set from the National Natural Language Processing Clinical Challenges (N2C2), providing a statistically significant improvement over the baseline (<i>P</i><.001). In comparison, in the 2019 N2C2/Open Health Natural Language Processing Shared Task, the median F1 score of all 17 participating teams was 76.59%. CONCLUSIONS Our approach, which leverages a state-of-the-art named entity recognition model for disease mention detection coupled with a hybrid method for FM mention detection, achieved an effectiveness that was close to that of the top 3 systems participating in the 2019 N2C2 FH extraction challenge, with only the top system convincingly outperforming our approach in terms of precision.


Author(s):  
Beata Fonferko-Shadrach ◽  
Arron Lacey ◽  
Ashley Akbari ◽  
Simon Thompson ◽  
David Ford ◽  
...  

IntroductionElectronic health records (EHR) are a powerful resource in enabling large-scale healthcare research. EHRs often lack detailed disease-specific information that is collected in free text within clinical settings. This challenge can be addressed by using Natural Language Processing (NLP) to derive and extract detailed clinical information from free text. Objectives and ApproachUsing a training sample of 40 letters, we used the General Architecture for Text Engineering (GATE) framework to build custom rule sets for nine categories of epilepsy information as well as clinic date and date of birth. We used a validation set of 200 clinic letters to compare the results of our algorithm to a separate manual review by a clinician, where we evaluated a “per item” and a “per letter” approach for each category. ResultsThe “per letter” approach identified 1,939 items of information with overall precision, recall and F1-score of 92.7%, 77.7% and 85.6%. Precision and recall for epilepsy specific categories were: diagnosis (85.3%,92.4%),  type (93.7%,83.2%), focal seizure (99.0%,68.3%), generalised seizure (92.5%,57.0%), seizure frequency (92.0%,52.3%), medication (96.1%,94.0%), CT (66.7%,47.1%), MRI (96.6%,51.4%) and EEG (95.8%,40.6%). By combining all items per category, per letter we were able to achieve higher precision, recall and F1-scores of 94.6%, 84.2% and 89.0% across all categories. Conclusion/ImplicationsOur results demonstrate that NLP techniques can be used to accurately extract rich phenotypic details from clinic letters that is often missing from routinely-collected data. Capturing these new data types provides a platform for conducting novel precision neurology research, in addition to potential applicability to other disease areas.


Author(s):  
Mario Jojoa Acosta ◽  
Gema Castillo-Sánchez ◽  
Begonya Garcia-Zapirain ◽  
Isabel de la Torre Díez ◽  
Manuel Franco-Martín

The use of artificial intelligence in health care has grown quickly. In this sense, we present our work related to the application of Natural Language Processing techniques, as a tool to analyze the sentiment perception of users who answered two questions from the CSQ-8 questionnaires with raw Spanish free-text. Their responses are related to mindfulness, which is a novel technique used to control stress and anxiety caused by different factors in daily life. As such, we proposed an online course where this method was applied in order to improve the quality of life of health care professionals in COVID 19 pandemic times. We also carried out an evaluation of the satisfaction level of the participants involved, with a view to establishing strategies to improve future experiences. To automatically perform this task, we used Natural Language Processing (NLP) models such as swivel embedding, neural networks, and transfer learning, so as to classify the inputs into the following three categories: negative, neutral, and positive. Due to the limited amount of data available—86 registers for the first and 68 for the second—transfer learning techniques were required. The length of the text had no limit from the user’s standpoint, and our approach attained a maximum accuracy of 93.02% and 90.53%, respectively, based on ground truth labeled by three experts. Finally, we proposed a complementary analysis, using computer graphic text representation based on word frequency, to help researchers identify relevant information about the opinions with an objective approach to sentiment. The main conclusion drawn from this work is that the application of NLP techniques in small amounts of data using transfer learning is able to obtain enough accuracy in sentiment analysis and text classification stages.


2021 ◽  
Vol 28 (1) ◽  
pp. e100262
Author(s):  
Mustafa Khanbhai ◽  
Patrick Anyadi ◽  
Joshua Symons ◽  
Kelsey Flott ◽  
Ara Darzi ◽  
...  

ObjectivesUnstructured free-text patient feedback contains rich information, and analysing these data manually would require a lot of personnel resources which are not available in most healthcare organisations.To undertake a systematic review of the literature on the use of natural language processing (NLP) and machine learning (ML) to process and analyse free-text patient experience data.MethodsDatabases were systematically searched to identify articles published between January 2000 and December 2019 examining NLP to analyse free-text patient feedback. Due to the heterogeneous nature of the studies, a narrative synthesis was deemed most appropriate. Data related to the study purpose, corpus, methodology, performance metrics and indicators of quality were recorded.ResultsNineteen articles were included. The majority (80%) of studies applied language analysis techniques on patient feedback from social media sites (unsolicited) followed by structured surveys (solicited). Supervised learning was frequently used (n=9), followed by unsupervised (n=6) and semisupervised (n=3). Comments extracted from social media were analysed using an unsupervised approach, and free-text comments held within structured surveys were analysed using a supervised approach. Reported performance metrics included the precision, recall and F-measure, with support vector machine and Naïve Bayes being the best performing ML classifiers.ConclusionNLP and ML have emerged as an important tool for processing unstructured free text. Both supervised and unsupervised approaches have their role depending on the data source. With the advancement of data analysis tools, these techniques may be useful to healthcare organisations to generate insight from the volumes of unstructured free-text data.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 183-183
Author(s):  
Javad Razjouyan ◽  
Jennifer Freytag ◽  
Edward Odom ◽  
Lilian Dindo ◽  
Aanand Naik

Abstract Patient Priorities Care (PPC) is a model of care that aligns health care recommendations with priorities of older adults with multiple chronic conditions. Social workers (SW), after online training, document PPC in the patient’s electronic health record (EHR). Our goal is to identify free-text notes with PPC language using a natural language processing (NLP) model and to measure PPC adoption and effect on long term services and support (LTSS) use. Free-text notes from the EHR produced by trained SWs passed through a hybrid NLP model that utilized rule-based and statistical machine learning. NLP accuracy was validated against chart review. Patients who received PPC were propensity matched with patients not receiving PPC (control) on age, gender, BMI, Charlson comorbidity index, facility and SW. The change in LTSS utilization 6-month intervals were compared by groups with univariate analysis. Chart review indicated that 491 notes out of 689 had PPC language and the NLP model reached to precision of 0.85, a recall of 0.90, an F1 of 0.87, and an accuracy of 0.91. Within group analysis shows that intervention group used LTSS 1.8 times more in the 6 months after the encounter compared to 6 months prior. Between group analysis shows that intervention group has significant higher number of LTSS utilization (p=0.012). An automated NLP model can be used to reliably measure the adaptation of PPC by SW. PPC seems to encourage use of LTSS that may delay time to long term care placement.


2021 ◽  
pp. 1063293X2098297
Author(s):  
Ivar Örn Arnarsson ◽  
Otto Frost ◽  
Emil Gustavsson ◽  
Mats Jirstrand ◽  
Johan Malmqvist

Product development companies collect data in form of Engineering Change Requests for logged design issues, tests, and product iterations. These documents are rich in unstructured data (e.g. free text). Previous research affirms that product developers find that current IT systems lack capabilities to accurately retrieve relevant documents with unstructured data. In this research, we demonstrate a method using Natural Language Processing and document clustering algorithms to find structurally or contextually related documents from databases containing Engineering Change Request documents. The aim is to radically decrease the time needed to effectively search for related engineering documents, organize search results, and create labeled clusters from these documents by utilizing Natural Language Processing algorithms. A domain knowledge expert at the case company evaluated the results and confirmed that the algorithms we applied managed to find relevant document clusters given the queries tested.


2015 ◽  
Vol 54 (04) ◽  
pp. 338-345 ◽  
Author(s):  
A. Fong ◽  
R. Ratwani

SummaryObjective: Patient safety event data repositories have the potential to dramatically improve safety if analyzed and leveraged appropriately. These safety event reports often consist of both structured data, such as general event type categories, and unstructured data, such as free text descriptions of the event. Analyzing these data, particularly the rich free text narratives, can be challenging, especially with tens of thousands of reports. To overcome the resource intensive manual review process of the free text descriptions, we demonstrate the effectiveness of using an unsupervised natural language processing approach.Methods: An unsupervised natural language processing technique, called topic modeling, was applied to a large repository of patient safety event data to identify topics, or themes, from the free text descriptions of the data. Entropy measures were used to evaluate and compare these topics to the general event type categories that were originally assigned by the event reporter.Results: Measures of entropy demonstrated that some topics generated from the un-supervised modeling approach aligned with the clinical general event type categories that were originally selected by the individual entering the report. Importantly, several new latent topics emerged that were not originally identified. The new topics provide additional insights into the patient safety event data that would not otherwise easily be detected.Conclusion: The topic modeling approach provides a method to identify topics or themes that may not be immediately apparent and has the potential to allow for automatic reclassification of events that are ambiguously classified by the event reporter.


Sign in / Sign up

Export Citation Format

Share Document