Abstract 1122‐000188: 3D Analysis of Atherosclerotic Plaque Enhancement and the Parent Vessel

Author(s):  
Sebastian Sanchez ◽  
Ashrita Raghuram ◽  
Alberto Varon Miller ◽  
Rami Fakih ◽  
Edgar A Samaniego

Introduction : High resolution vessel wall imaging (HR‐VWI) is a promising tool in studying intracerebral atherosclerotic disease. The analysis of the interplay between the patterns of enhancement between the plaque and its parent vessel can generate further insights on the biology of these lesions. We have developed a 3D method of plaque and parent vessel analysis. Methods : Images from fifty‐five plaques were obtained using 7T HR‐VWI. T1 and T1+Gd sequences were performed. 3D reconstructions of the plaque and its parent vessel were generated with 3D Slicer. Using an in‐house code, probes were orthogonally extended from the lumen of the vessel into the vessel wall and the plaque. Signal intensity values were then normalized to the corpus callosum. 3D heat maps and histograms were generated from hundreds of data points. A detailed analysis of the morphology of the histograms was performed to determine the uptake of gadolinium (Gd) by the parent vessel and the plaque. Variations in the width of the histogram were measured with the standard deviation. Results : Forty‐one patients with 55 plaques (41 culprit and 15 non culprit) were included. There was no difference in enhancement in T1‐pre between culprit and non‐culprit plaques when compared to the parent vessel (width = 0.14 ± 0.05 and 0.14 ± 0.03, respectively; p = 0.91). On the T1+Gd culprit plaques were significantly more enhancing compared to the parent vessel (0.26 ± 0.10) than non‐culprit plaques (0.20 ± 0.06) (p = 0.02). The presence of an enhancing plaque creates a bimodal distribution that increases the width of the histogram curve (figure). Conclusions : Culprit plaques exhibit different patterns of enhancement relative to the parent vessel compared to non‐culprit plaques. Histogram analysis of the parent vessel and its plaques provides a new set of metrics that may be used as a biomarker of disease progression.

2020 ◽  
Vol 78 (10) ◽  
pp. 642-650
Author(s):  
Felipe Torres PACHECO ◽  
Luiz Celso Hygino da CRUZ JUNIOR ◽  
Igor Gomes PADILHA ◽  
Renato Hoffmann NUNES ◽  
Antônio Carlos Martins MAIA JUNIOR ◽  
...  

ABSTRACT Intracranial vessel wall imaging plays an increasing role in diagnosing intracranial vascular diseases. With the growing demand and subsequent increased use of this technique in clinical practice, radiologists and neurologists should be aware of the choices in imaging parameters and how they affect image quality, clinical indications, methods of assessment, and limitations in the interpretation of these images. Due to the improvement of the MRI techniques, the possibility of accurate and direct evaluation of the abnormalities in the arterial vascular wall (vessel wall imaging) has evolved, adding substantial data to diagnosis when compared to the indirect evaluation based on conventional flow analyses. Herein, the authors proposed a comprehensive approach of this technique reinforcing appropriated clinical settings to better use intracranial vessel wall imaging.


2021 ◽  
Author(s):  
Neha Choudhary ◽  
Sameer Vyas ◽  
Manish Modi ◽  
Shashank Raj ◽  
Ajay Kumar ◽  
...  

2021 ◽  
Author(s):  
Neha Choudhary ◽  
Sameer Vyas ◽  
Chirag Kamal Ahuja ◽  
Manish Modi ◽  
Naveen Sankhyan ◽  
...  

2021 ◽  
Vol 25 ◽  
pp. 101170
Author(s):  
Mohd Fandi Al Khafiz Kamis ◽  
Mohd Naim Mohd Yaakob ◽  
Ezamin Abdul Rahim ◽  
Ahmad Sobri Muda ◽  
Mohamad Syafeeq Faeez Md Noh

Children ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 38
Author(s):  
Rosamaria Fastuca ◽  
Helga Turiaco ◽  
Fausto Assandri ◽  
Piero A. Zecca ◽  
Luca Levrini ◽  
...  

(1) Background: To investigate condylar position in subjects with functional posterior crossbite comparing findings before and after rapid maxillary expansion (RME) treatment through 3D analysis; (2) Methods: Thirty-two Caucasian patients (14 males, mean age 8 y 8 m ± 1 y 2 m; 18 females mean age 8 y 2 m ± 1 y 4 m) with functional posterior crossbite (FPXB) diagnosis underwent rapid palatal expansion with a Haas appliance banded on second deciduous upper molars. Patients’ underwent CBCT scans before rapid palatal expansion (T0) and after 12 months (T1). The images were processed through 3D slicer software; (3) Results: The condylar position changes between T1 and T0 among the crossbite and non-crossbite sides were not statistically significant, except for the transversal axis. At T1, the condyles moved forward (y axis) and laterally (x axis), they also moved downward (z axis) but not significantly; (4) Conclusions: Condilar position in growing patients with functional posterior crossbite did not change significantly after rapid maxillary expansion.


Author(s):  
Rami Fakih ◽  
Alberto Miller ◽  
Ashrita Raghuram ◽  
Sebastian Herrera ◽  
Sedat Kandemirli ◽  
...  

Introduction : Current imaging modalities might underestimate the presence and severity of intracranial atherosclerosis (ICAD). High resolution vessel wall imaging (HR‐VWI) MRI emerged as a powerful tool to diagnose plaques not detected on routine imaging. We aim to compare different imaging modalities (HR‐VWI MRI; digital subtraction angiogram (DSA); Time‐of‐flight (TOF) MRA; and CTA) in the identification and characterization of intracranial atherosclerotic culprit plaques. Methods : Patients diagnosed with ICAD were prospectively imaged with HR‐VWI MRI. Culprit plaques were identified based on the likelihood of causing the stroke. Using cross‐sectional images of intracranial vessels, regions of interest (ROI) were delineated. Then, diameters and ROI areas were measured for the purpose of calculating the following variables: degree of stenosis (DS) at the plaque level, plaque burden (PB), and remodeling index (RI). Additional imaging modalities (DSA, TOF MRA, and CTA) were identified retrospectively for each patient. The sensitivity of detecting a culprit plaque as well as the correlations between the different variables were analyzed for each modality. Linear regression analysis was used to determine the association of DS with PB and RI. Interobserver agreement on the determination of a culprit plaque on every imaging modality was evaluated. Results : A total of 44 patients who underwent HR‐VWI had ICAD and were included in the final analysis. Of those, 34 had CTA, 18 had TOF‐MRA, and 18 had DSA. Using HR‐VWI as gold standard, the sensitivity for culprit plaque detection was 88% for DSA, 78% for TOF MRA, and 76% for CTA. We found no difference between the DS in all four modalities using measured cross‐sectional diameters, but difference was found when measuring ROI areas to calculate DS. There was a significant positive correlation between PB and DS on HR‐VWI MRI (p<0.001), but not on the DSA (p = 0.168), MRA (p = 0.144), or CTA (p = 0.253), and a significant negative correlation between RI and DS on HR‐VWI MRI (p = 0.003), but not on DSA (p = 0.783), MRA (p = 0.405), or CTA (p = 0.751). PB and RI predicted the degrees of stenosis on HR‐VWI, but not on the other modalities. There was good inter‐rater agreement for culprit plaque detection on HR‐VWI (k = 0.48, p = 0.001), but no agreement was found on the other modalities. Conclusions : HR‐VWI MRI can locate otherwise undetectable plaques on conventional imaging through the ability to measure plaque burden, an essential component for characterization of plaques severity and a strong predictor of stenosis. HR‐VWI also showed more accurate measurements of degree of stenosis through measurement of ROI areas, and had good inter‐rater agreement for accurate plaque detection, compared to DSA, MRA, and CTA.


Sign in / Sign up

Export Citation Format

Share Document