scholarly journals Influence of Surface Free Energy of Polymer on Dispersibility of Multi-walled Carbon Nanotube and Conductivity of Carbon/Polymer Composites

2014 ◽  
Vol 50 (4) ◽  
pp. 115-122 ◽  
Author(s):  
Syo OHTAKA ◽  
Takuya TETSUMOTO ◽  
Sou MIYATA ◽  
Yasuo GOTOH
2018 ◽  
Vol 762 ◽  
pp. 176-181
Author(s):  
Jevgenijs Jaunslavietis ◽  
Galia Shulga ◽  
Jurijs Ozolins ◽  
Brigita Neiberte ◽  
Anrijs Verovkins ◽  
...  

In this study, hydrophobic-hydrophilic characteristics, including contact angle and moisture sorption of a modified wood filler and the wood-polymer composites (WPC) containing it was investigated. The wood filler obtained from aspen sawdust was modified by mild acid hydrolysis and by ammoxidation. Contact angles of the wood particles and the WPC samples were measured with Kruss K100M using the Washburn and Wilhelmy methods, respectively. Work of adhesion was calculated using Young-Dupre equation. Surface free energy as well as its dispersive and polar parts were found using Owens-Wendt-Rabel-Kaelble approach. It was found that the hydrolysis and the ammoxidation led to decrease of the hemicelluloses content in the lignocellulosic matrix. Beside this, the ammoxidation favours the formation of amide bonds in the ammoxidised particles. These changes enhanced the contact angles, decreased the work of adhesion, and decreased surface free energy of the WPC samples filled with the modified particles in comparison with the WPC sample that contained the unmodified ones. The treatment of the wood particles decreased the wettability towards water, but increased it towards recycled polypropylene. This positively effects mechanical properties of the samples.


Sign in / Sign up

Export Citation Format

Share Document