Neural Basis of the Retrieval of People's Names: Evidence from Brain-Damaged Patients and fMRI

2002 ◽  
Vol 14 (6) ◽  
pp. 922-937 ◽  
Author(s):  
Takashi Tsukiura ◽  
Toshikatsu Fujii ◽  
Reiko Fukatsu ◽  
Taisuke Otsuki ◽  
Jiro Okuda ◽  
...  

The aim of this study was to identify the neuroanatomical basis of the retrieval of people's names. Lesion data showed that patients with language-dominant temporal lobectomy had impairments in their ability to retrieve familiar and newly learned people's names, whereas patients with language-nondominant temporal lobectomy had difficulty retrieving newly learned people's names. Functional magnetic resonance imaging experiments revealed activations in the left temporal polar region during the retrieval of familiar and newly learned people's names, and in the right superior temporal and bilateral prefrontal cortices during the retrieval of newly learned information from face cues. These data provide new evidence that the left anterior temporal region is crucial for the retrieval of people's names irrespective of their familiarity and that the right superior temporal and bilateral prefrontal areas are crucial for the process of associating newly learned people's faces and names.

2021 ◽  
Vol 15 ◽  
Author(s):  
Ke Song ◽  
Yong Wang ◽  
Mei-Xia Ren ◽  
Jiao Li ◽  
Ting Su ◽  
...  

Background: Using resting-state functional connectivity (rsFC), we investigated alternations in spontaneous brain activities reflected by functional connectivity density (FCD) in patients with optic neuritis (ON).Methods: We enrolled 28 patients with ON (18 males, 10 females) and 24 healthy controls (HCs; 16 males, 8 females). All subjects underwent functional magnetic resonance imaging (fMRI) in a quiet state to determine the values of rsFC, long-range FCD (longFCD), and short-range FCD (IFCD). Receiver operating characteristic (ROC) curves were generated to distinguish patients from HCs.Results: The ON group exhibited obviously lower longFCD values in the left inferior frontal gyrus triangle, the right precuneus and the right anterior cingulate, and paracingulate gyri/median cingulate and paracingulate gyri. The left median cingulate and paracingulate gyri and supplementary motor area (SMA) were also significantly lower. Obviously reduced IFCD values were observed in the left middle temporal gyrus/angular gyrus/SMA and right cuneus/SMA compared with HCs.Conclusion: Abnormal neural activities were found in specific brain regions in patients with ON. Specifically, they showed significant changes in rsFC, longFCD, and IFCD values. These may be useful to identify the specific mechanism of change in brain function in ON.


2016 ◽  
Vol 47 (4) ◽  
pp. 597-607 ◽  
Author(s):  
C. I. Workman ◽  
K. E. Lythe ◽  
S. McKie ◽  
J. Moll ◽  
J. A. Gethin ◽  
...  

BackgroundA high proportion of patients with remitted major depressive disorder (MDD) will experience recurring episodes, whilst some develop resilience and remain in recovery. The neural basis of resilience to recurrence is elusive. Abnormal resting-state connectivity of the subgenual cingulate cortex (sgACC) was previously found in cross-sectional studies of MDD, suggesting its potential pathophysiological importance. The current study aimed to investigate whether resting-state connectivity to a left sgACC seed region distinguishes resilient patients from those developing recurring episodes.MethodA total of 47 medication-free remitted MDD patients and 38 healthy controls underwent resting-state functional magnetic resonance imaging (fMRI) at baseline. Over 14 months, 30 patients remained resilient whilst 17 experienced a recurring episode.ResultsAttenuated interhemispheric left-to-right sgACC connectivity distinguished the resilient from the recurring-episode and control groups and was not correlated with residual depressive symptoms.ConclusionsThe current study revealed a neural signature of resilience to recurrence in MDD and thereby elucidates the role of compensatory adaptation in sgACC networks.


2006 ◽  
Vol 189 (6) ◽  
pp. 560-561 ◽  
Author(s):  
Therese Van Amelsvoort ◽  
Nicole Schmitz ◽  
Eileen Daly ◽  
Quinton Deeley ◽  
Hugo Critchley ◽  
...  

SummaryWe studied the functional neuroanatomy of social behaviour in velo-cardio-facial syndrome (VCFS) using a facial emotional processing task and functional magnetic resonance imaging in adults with this syndrome and controls matched for age and IQ. The VCFS group had less activation in the right insula and frontal brain regions and more activation in occipital regions. Genetically determined abnormalities in pathways including those involved in emotional processing may underlie deficits in social cognition in people with VCFS.


2019 ◽  
Author(s):  
Konstantina Kilteni ◽  
H. Henrik Ehrsson

AbstractSince the early 1970s, numerous behavioral studies have shown that self-generated touch feels less intense than the same touch applied externally. Computational motor control theories have suggested that cerebellar internal models predict the somatosensory consequences of our movements and that these predictions attenuate the perception of the actual touch. Despite this influential theoretical framework, little is known about the neural basis of this predictive attenuation. This is due to the limited number of neuroimaging studies, the presence of conflicting results about the role and the location of cerebellar activity, and the lack of behavioral measures accompanying the neural findings. Here, we combined psychophysics with functional magnetic resonance imaging to detect the neural processes underlying somatosensory attenuation in male and female healthy human participants. Activity in bilateral secondary somatosensory areas was attenuated when the touch was presented during a self-generated movement (self-generated touch) than in the absence of movement (external touch). An additional attenuation effect was observed in the cerebellum that is ipsilateral to the passive limb receiving the touch. Importantly, we further found that the degree of functional connectivity between the ipsilateral cerebellum and the contralateral primary and bilateral secondary somatosensory areas was linearly and positively related to the degree of behaviorally assessed attenuation; that is, the more participants perceptually attenuated their self-generated touches, the stronger this corticocerebellar coupling. Collectively, these results suggest that the ipsilateral cerebellum is fundamental in predicting self-generated touch and that this structure implements somatosensory attenuation via its functional connectivity with somatosensory areas.Significance statementWhen we touch our hand with the other, the resulting sensation feels less intense than when another person or a machine touches our hand with the same intensity. Early computational motor control theories have proposed that the cerebellum predicts and cancels the sensory consequences of our movements; however, the neural correlates of this cancelation remain unknown. By means of functional magnetic resonance imaging, we show that the more participants attenuate the perception of their self-generated touch, the stronger the functional connectivity between the cerebellum and the somatosensory cortical areas. This provides conclusive evidence about the role of the cerebellum in predicting the sensory feedback of our movements and in attenuating the associated percepts via its connections to early somatosensory areas.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xia Yang ◽  
Ya-jing Meng ◽  
Yu-jie Tao ◽  
Ren-hao Deng ◽  
Hui-yao Wang ◽  
...  

Background: Alcohol dependence (AD) is a chronic recurrent brain disease that causes a heavy disease burden worldwide, partly due to high relapse rates after detoxification. Verified biomarkers are not available for AD and its relapse, although the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) may play important roles in the mechanism of addiction. This study investigated AD- and relapse-associated functional connectivity (FC) of the NAc and mPFC with other brain regions during early abstinence.Methods: Sixty-eight hospitalized early-abstinence AD male patients and 68 age- and education-matched healthy controls (HCs) underwent resting-functional magnetic resonance imaging (r-fMRI). Using the NAc and mPFC as seeds, we calculated changes in FC between the seeds and other brain regions. Over a follow-up period of 6 months, patients were measured with the Alcohol Use Disorder Identification Test (AUDIT) scale to identify relapse outcomes (AUDIT ≥ 8).Results: Thirty-five (52.24%) of the AD patients relapsed during the follow-up period. AD displayed lower FC of the left fusiform, bilateral temporal superior and right postcentral regions with the NAc and lower FC of the right temporal inferior, bilateral temporal superior, and left cingulate anterior regions with the mPFC compared to controls. Among these FC changes, lower FC between the NAc and left fusiform, lower FC between the mPFC and left cingulate anterior cortex, and smoking status were independently associated with AD. Subjects in relapse exhibited lower FC of the right cingulate anterior cortex with NAc and of the left calcarine sulcus with mPFC compared to non-relapsed subjects; both of these reductions in FC independently predicted relapse. Additionally, FC between the mPFC and right frontal superior gyrus, as well as years of education, independently predicted relapse severity.Conclusion: This study found that values of FC between selected seeds (i.e., the NAc and the mPFC) and some other reward- and/or impulse-control-related brain regions were associated with AD and relapse; these FC values could be potential biomarkers of AD or for prediction of relapse. These findings may help to guide further research on the neurobiology of AD and other addictive disorders.


2004 ◽  
Vol 184 (2) ◽  
pp. 128-135 ◽  
Author(s):  
Iris E. C. Sommer ◽  
Nick F. Ramsey ◽  
René C. W. Mandl ◽  
Clarine J. Van Oel ◽  
René S. Kahn

BackgroundIn previous functional magnetic resonance imaging (fMRI) studies, participants with schizophrenia showed decreased language lateralisation, resulting from increased activation of the right hemisphere compared with controls.AimTo determine whether decreased lateralisation and increased right cerebral language activation constitute genetic predispositions for schizophrenia.MethodLanguage activation was measured using fMRI in 12 right-handed monozygotic twin pairs discordant for schizophrenia and 12 healthy right-handed monozygotic twin pairs who were matched for gender, age and education.ResultsLanguage lateralisation was decreased in discordant twin pairs compared with the healthy twin pairs. The groups did not differ in activation of the language-related areas of the left hemisphere, but language-related activation in the right hemisphere was significantly higher in the discordant twin pairs than in the healthy pairs. Within the discordant twin pairs, language lateralisation was not significantly different between patients with schizophrenia and their co-twins.ConclusionsDecreased language lateralisation may constitute a genetic predisposition for schizophrenia.


Sign in / Sign up

Export Citation Format

Share Document