scholarly journals Functional Connectivity of Nucleus Accumbens and Medial Prefrontal Cortex With Other Brain Regions During Early-Abstinence Is Associated With Alcohol Dependence and Relapse: A Resting-Functional Magnetic Resonance Imaging Study

2021 ◽  
Vol 12 ◽  
Author(s):  
Xia Yang ◽  
Ya-jing Meng ◽  
Yu-jie Tao ◽  
Ren-hao Deng ◽  
Hui-yao Wang ◽  
...  

Background: Alcohol dependence (AD) is a chronic recurrent brain disease that causes a heavy disease burden worldwide, partly due to high relapse rates after detoxification. Verified biomarkers are not available for AD and its relapse, although the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) may play important roles in the mechanism of addiction. This study investigated AD- and relapse-associated functional connectivity (FC) of the NAc and mPFC with other brain regions during early abstinence.Methods: Sixty-eight hospitalized early-abstinence AD male patients and 68 age- and education-matched healthy controls (HCs) underwent resting-functional magnetic resonance imaging (r-fMRI). Using the NAc and mPFC as seeds, we calculated changes in FC between the seeds and other brain regions. Over a follow-up period of 6 months, patients were measured with the Alcohol Use Disorder Identification Test (AUDIT) scale to identify relapse outcomes (AUDIT ≥ 8).Results: Thirty-five (52.24%) of the AD patients relapsed during the follow-up period. AD displayed lower FC of the left fusiform, bilateral temporal superior and right postcentral regions with the NAc and lower FC of the right temporal inferior, bilateral temporal superior, and left cingulate anterior regions with the mPFC compared to controls. Among these FC changes, lower FC between the NAc and left fusiform, lower FC between the mPFC and left cingulate anterior cortex, and smoking status were independently associated with AD. Subjects in relapse exhibited lower FC of the right cingulate anterior cortex with NAc and of the left calcarine sulcus with mPFC compared to non-relapsed subjects; both of these reductions in FC independently predicted relapse. Additionally, FC between the mPFC and right frontal superior gyrus, as well as years of education, independently predicted relapse severity.Conclusion: This study found that values of FC between selected seeds (i.e., the NAc and the mPFC) and some other reward- and/or impulse-control-related brain regions were associated with AD and relapse; these FC values could be potential biomarkers of AD or for prediction of relapse. These findings may help to guide further research on the neurobiology of AD and other addictive disorders.

2021 ◽  
Vol 15 ◽  
Author(s):  
Ke Song ◽  
Yong Wang ◽  
Mei-Xia Ren ◽  
Jiao Li ◽  
Ting Su ◽  
...  

Background: Using resting-state functional connectivity (rsFC), we investigated alternations in spontaneous brain activities reflected by functional connectivity density (FCD) in patients with optic neuritis (ON).Methods: We enrolled 28 patients with ON (18 males, 10 females) and 24 healthy controls (HCs; 16 males, 8 females). All subjects underwent functional magnetic resonance imaging (fMRI) in a quiet state to determine the values of rsFC, long-range FCD (longFCD), and short-range FCD (IFCD). Receiver operating characteristic (ROC) curves were generated to distinguish patients from HCs.Results: The ON group exhibited obviously lower longFCD values in the left inferior frontal gyrus triangle, the right precuneus and the right anterior cingulate, and paracingulate gyri/median cingulate and paracingulate gyri. The left median cingulate and paracingulate gyri and supplementary motor area (SMA) were also significantly lower. Obviously reduced IFCD values were observed in the left middle temporal gyrus/angular gyrus/SMA and right cuneus/SMA compared with HCs.Conclusion: Abnormal neural activities were found in specific brain regions in patients with ON. Specifically, they showed significant changes in rsFC, longFCD, and IFCD values. These may be useful to identify the specific mechanism of change in brain function in ON.


2006 ◽  
Vol 189 (6) ◽  
pp. 560-561 ◽  
Author(s):  
Therese Van Amelsvoort ◽  
Nicole Schmitz ◽  
Eileen Daly ◽  
Quinton Deeley ◽  
Hugo Critchley ◽  
...  

SummaryWe studied the functional neuroanatomy of social behaviour in velo-cardio-facial syndrome (VCFS) using a facial emotional processing task and functional magnetic resonance imaging in adults with this syndrome and controls matched for age and IQ. The VCFS group had less activation in the right insula and frontal brain regions and more activation in occipital regions. Genetically determined abnormalities in pathways including those involved in emotional processing may underlie deficits in social cognition in people with VCFS.


2012 ◽  
Vol 43 (9) ◽  
pp. 1921-1927 ◽  
Author(s):  
Y. Tang ◽  
L. Kong ◽  
F. Wu ◽  
F. Womer ◽  
W. Jiang ◽  
...  

BackgroundConvergent studies provide support for abnormalities in the structure and functioning of the prefrontal cortex (PFC) and the amygdala, the key components of the neural system that subserves emotional processing in major depressive disorder (MDD). We used resting-state functional magnetic resonance imaging (fMRI) to examine potential amygdala–PFC functional connectivity abnormalities in treatment-naive subjects with MDD.MethodsResting-state fMRI data were acquired from 28 individuals with MDD and 30 healthy control (HC) subjects. Amygdala–PFC functional connectivity was compared between the MDD and HC groups.ResultsDecreased functional connectivity to the left ventral PFC (VPFC) from the left and right amygdala was observed in the MDD group, compared with the HC group (p < 0.05, corrected).ConclusionsThe treatment-naive subjects with MDD showed decreased functional connectivity from the amygdala to the VPFC, especially to the left VPFC. This suggests that these connections may play an important role in the neuropathophysiology of MDD at its onset.


1997 ◽  
Vol 9 (5) ◽  
pp. 605-610 ◽  
Author(s):  
Gregory McCarthy ◽  
Aina Puce ◽  
John C. Gore ◽  
Truett Allison

The perception of faces is sometimes regarded as a specialized task involving discrete brain regions. In an attempt to identi$ face-specific cortex, we used functional magnetic resonance imaging (fMRI) to measure activation evoked by faces presented in a continuously changing montage of common objects or in a similar montage of nonobjects. Bilateral regions of the posterior fusiform gyrus were activated by faces viewed among nonobjects, but when viewed among objects, faces activated only a focal right fusiform region. To determine whether this focal activation would occur for another category of familiar stimuli, subjects viewed flowers presented among nonobjects and objects. While flowers among nonobjects evoked bilateral fusiform activation, flowers among objects evoked no activation. These results demonstrate that both faces and flowers activate large and partially overlapping regions of inferior extrastriate cortex. A smaller region, located primarily in the right lateral fusiform gyrus, is activated specifically by faces.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Cui-Ping Xu ◽  
Shou-Wen Zhang ◽  
Tie Fang ◽  
Ma Manxiu ◽  
Qian Chencan ◽  
...  

Functional connectivity has been correlated with a patient’s level of consciousness and has been found to be altered in several neuropsychiatric disorders. Absence epilepsy patients, who experience a loss of consciousness, are assumed to suffer from alterations in thalamocortical networks; however, previous studies have not explored the changes at a functional module level. We used resting-state functional magnetic resonance imaging to examine the alteration in functional connectivity that occurs in absence epilepsy patients. By parcellating the brain into 90 brain regions/nodes, we uncovered an altered functional connectivity within and between functional modules. Some brain regions had a greater number of altered connections and therefore behaved as key nodes in the changed network pattern; these regions included the superior frontal gyrus, the amygdala, and the putamen. In particular, the superior frontal gyrus demonstrated both an increased value of connections with other nodes of the frontal default mode network and a decreased value of connections with the limbic system. This divergence is positively correlated with epilepsy duration. These findings provide a new perspective and shed light on how functional connectivity and the balance of within/between module connections may contribute to both the state of consciousness and the development of absence epilepsy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ting Yang ◽  
Bangli Shen ◽  
Aiqin Wu ◽  
Xinglu Tang ◽  
Wei Chen ◽  
...  

Convergent evidence indicates that individuals with symptoms of depression exhibit altered functional connectivity (FC) of the amygdala, which is a key brain region in processing emotions. At present, the characteristics of amygdala functional circuits in patients with mild cognitive impairment (MCI) with and without depression are not clear. The current study examined the features of amygdala FC in patients with MCI with depression symptoms (D-MCI) using resting-state functional magnetic resonance imaging. We acquired resting-state functional magnetic resonance imaging data from 16 patients with D-MCI, 18 patients with MCI with no depression (nD-MCI), and 20 healthy controls (HCs) using a 3T scanner and compared the strength of amygdala FC between the three groups. Patients with D-MCI exhibited significant FC differences in the amygdala–medial prefrontal cortex and amygdala–sensorimotor networks. These results suggest that the dysfunction of the amygdala–medial prefrontal cortex network and the amygdala–sensorimotor network might be involved in the neural mechanism underlying depression in MCI.


2004 ◽  
Vol 16 (4) ◽  
pp. 609-620 ◽  
Author(s):  
Marcel Brass ◽  
D. Yves von Cramon

It is widely acknowledged that the prefrontal cortex plays a major role in cognitive control processes. One important experimental paradigm for investigating such higher order cognitive control is the task-switching paradigm. This paradigm investigates the ability to switch flexibly between different task situations. In this context, it has been found that participants are able to anticipatorily prepare an upcoming task. This ability has been assumed to reflect endogenous cognitive control. However, it is difficult to isolate task preparation process from task execution using functional magnetic resonance imaging (fMRI). In the present study, we introduce a new experimental manipulation to investigate task preparation with fMRI. By manipulating the number of times a task was prepared, we could demonstrate that the left inferior frontal junction (IFJ) area (near the junction of inferior frontal sulcus and inferior precentral sulcus), the right inferior frontal gyrus, and the right intraparietal sulcus are involved in task preparation. By manipulating the cue-task mapping, we could further show that this activation is not related to cue encoding but to the updating of the relevant task representation. Based on these and previous results, we assume that the IFJ area constitutes a functionally separable division of the lateral prefrontal cortex. Finally, our data suggest that task preparation does not differ for switch and repetition trials in paradigms with a high proportion of switch trials, casting doubt on the assumption that an independent task set reconfiguration process takes place in the preparation interval.


Sign in / Sign up

Export Citation Format

Share Document