Spatial Processing and Hemispheric Asymmetry: Contributions of the Transient/Magnocellular Visual System

1998 ◽  
Vol 10 (4) ◽  
pp. 472-484 ◽  
Author(s):  
Elizabeth Cowin Roth ◽  
Joseph B. Hellige

Right-handed observers were presented with stimuli consisting of a line and two horizontally separated dots. A categorical spatial task required observers to indicate whether the dots were above or below the line, and a coordinate spatial task required observers to indicate whether the line could fit into the space between the two dots. For the coordinate task, reaction time was faster when the stimuli were presented to the left visual field (right hemisphere) than when the stimuli were presented to the right visual field (left hemisphere). The opposite hemispheric asymmetry was obtained for the categorical task. In addition, coordinate spatial processing took longer with stimuli presented on a red background than with stimuli presented on a green background. The opposite trend characterized categorical spatial processing. Because the color red attenuates processing in the transient/magnocellular visual pathway, these results suggest that coordinate spatial processing is more dependent on the transient/magnocellular pathway than is categorical spatial processing. However, manipulations of color condition had no effect on visual field (hemispheric) asymmetries, suggesting that the two hemispheres rely on the same visual information and on the same computational mechanisms as each other—although they do not always use that information with equal efficiency.

1994 ◽  
Vol 6 (2) ◽  
pp. 156-164 ◽  
Author(s):  
Elizabeth L. Cowin ◽  
Joseph B. Hellige

The present experiment examined the effects of dioptric blurring on the performance of two different spatial processing tasks using the same visual stimuli. One task (the above/below, categorical task) required subjects to indicate whether a dot was above or below a horizontal line. The other task (the coordinate, near/far task) required subjects to indicate whether the dot was within 3 mm of the line. For both tasks, the stimuli on each trial were presented to either the right visual field and left hemisphere (RVF/LH) or the left Visual field and right hemisphere (LVF/RH). For the above/below task, dioptric blurring consistently increased reaction time (RT) and did so equally on LVF/RH and RVF/LH trials. Furthermore, there was no significant difference between the two visual fields for either clear or blurred stimuli. For the near/far task, dioptric blurring had no consistent effect on either RT or error rate for either visual field. On an initial block of trials, however, there were significantly fewer errors on LVF/RH than on RVF/LH trials, with the LVF/RH advantage being independent of whether the stimuli were clear or blurred. This initial LVF/RH advantage disappeared quickly with practice, regardless of whether the stimuli were clear or blurred. This pattern of results suggests that for both cerebral hemispheres, somewhat different aspects of visual information are relevant for categorical versus coordinate spatial processing and that the right hemisphere is superior to the left for coordinate (but not categorical) spatial processing.


1999 ◽  
Vol 11 (2) ◽  
pp. 153-166 ◽  
Author(s):  
Marie T. Banich ◽  
Kara D. Federmeier

In this study we examined Kosslyn's (1987) claim that the right hemisphere exhibits a relative superiority for processing metric spatial relations, whereas the left hemisphere exhibits a relative superiority for processing categorical spatial relations. In particular, we examined whether some failures to observe strong visual field (VF) advantages in previous studies might be due to practice effects that allowed individuals to process tasks in alternative manners (e.g., to process a metric task using a categorical strategy). We used two versions of a task previously employed by Hellige and Michimata (1989) in which individuals judge the metric (distance) or categorical (above/below) spatial relations between a bar and a dot. In one version, the position of the bar was held static. In another, the bar's position varied. This manipulation prevented participants from using the computer screen as a reference frame, forcing them to compute the spatial relationships on the basis of the relevant items only (i.e., the bar and the dot). In the latter, but not the former version of the task we obtained evidence supporting Kosslyn's hypothesis, namely, a significant right visual field (RVF) advantage for categorical spatial processing and a trend toward a left visual field (LVF) advantage for metric spatial processing. Furthermore, the pattern of results for trials on which information was presented centrally (CVF trials) was similar to that observed on RVF trials, whereas the pattern for trials in which identical information was presented in each visual field (BVF trials) was similar to that observed on LVF trials. Such a pattern is consistent with Kosslyn's suggestion that categorical processing is better suited for cells with small receptive fields and metric processing for cells with larger receptive fields.


2002 ◽  
Vol 14 (2) ◽  
pp. 291-297 ◽  
Author(s):  
Matia Okubo ◽  
Chikashi Michimata

Right-handed participants performed the categorical and coordinate spatial relation judgments on stimuli presented to either the left visual field—right hemisphere (LVF-RH) or the right visual field—left hemisphere (RVF-LH). The stimulus patterns were formulated either by bright dots or by contrast-balanced dots. When the stimuli were bright, an RVF-LH advantage was observed for the categorical task, whereas an LVF-RH advantage was observed for the coordinate task. When the stimuli were contrast balanced, the RVF-LH advantage was observed for the categorical task, but the LVF-RH advantage was eliminated for the coordinate task. Because the contrast-balanced dots are largely devoid of low spatial frequency content, these results suggest that processing of low spatial frequency is responsible for the right hemisphere advantage for the coordinate spatial processing.


1993 ◽  
Vol 77 (3_suppl) ◽  
pp. 1299-1308 ◽  
Author(s):  
Peter Brugger ◽  
Alex Gamma ◽  
René Muri ◽  
Markus Schafer ◽  
Kirsten I. Taylor

30 right-handed subjects were given a lateralized tachistoscopic lexical-decision task. Subjects' belief in extrasensory perception (ESP) was assessed with a single six-point scale; 16 subjects were designated as believers in ESP and 14 subjects as nonbelievers. Believers in ESP did not exhibit a hemispheric asymmetry for the task while nonbelievers exhibited the expected right visual-field/left-hemisphere dominance documented in the literature. Believers' lack of asymmetry was not caused by an impaired left-hemisphere performance but rather by a significantly enhanced lexical-decision accuracy in the left visual field/right hemisphere compared to nonbelievers. These results are compatible with previous studies indicating a correlation between belief in ESP and a bias for right-hemisphere processing. Moreover, the results are relevant for a discussion of an association between paranormal beliefs and schizotypy: highly schizotypal individuals are not only particularly prone to believe in ESP but are also known to show an attenuation of hemispheric asymmetries in lateralized verbal tasks due to an enhanced contribution of the right hemisphere. We suggest that the neurological basis of delusion-like beliefs may involve a release of right-hemisphere function from left-hemisphere control and sketch the focus of research for a future “neuropsychology of belief.”


Author(s):  
Elizabeth Schechter

The largest fibre tract in the human brain connects the two cerebral hemispheres. A ‘split-brain’ surgery severs this structure, sometimes together with other white matter tracts connecting the right hemisphere and the left. Split-brain surgeries have long been performed on non-human animals for experimental purposes, but a number of these surgeries were also performed on adult human beings in the second half of the twentieth century, as a medical treatment for severe cases of epilepsy. A number of these people afterwards agreed to participate in ongoing research into the psychobehavioural consequences of the procedure. These experiments have helped to show that the corpus callosum is a significant source of interhemispheric interaction and information exchange in the ‘neurotypical’ brain. After split-brain surgery, the two hemispheres operate unusually independently of each other in the realm of perception, cognition, and the control of action. For instance, each hemisphere receives visual information directly from the opposite (‘contralateral’) side of space, the right hemisphere from the left visual field and the left hemisphere from the right visual field. This is true of the normal (‘neurotypical’) brain too, but in the neurotypical case interhemispheric tracts allow either hemisphere to gain access to the information that the other has received. In a split-brain subject however the information more or less stays put in whatever hemisphere initially received it. And it isn’t just visual information that is confined to one hemisphere or the other after the surgery. Rather, after split-brain surgery, each hemisphere is the source of proprietary perceptual information of various kinds, and is also the source of proprietary memories, intentions, and aptitudes. Various notions of psychological unity or integration have always been central to notions of mind, personhood, and the self. Although split-brain surgery does not prevent interhemispheric interaction or exchange, it naturally alters and impedes it. So does the split-brain subject as a whole nonetheless remain a unitary psychological being? Or could there now be two such psychological beings within one human animal – sharing one body, one face, one voice? Prominent neuropsychologists working with the subjects have often appeared to argue or assume that a split-brain subject has a divided or disunified consciousness and even two minds. Although a number of philosophers agree, the majority seem to have resisted these conscious and mental ‘duality claims’, defending alternative interpretations of the split-brain experimental results. The sources of resistance are diverse, including everything from a commitment to the necessary unity of consciousness, to recognition of those psychological processes that remain interhemispherically integrated, to concerns about what the moral and legal consequences would be of recognizing multiple psychological beings in one body. On the other hand underlying most of these arguments against the various ‘duality’ claims is the simple fact that the split-brain subject does not appear to be two persons, but one – and there are powerful conceptual, social, and moral connections between being a unitary person on the one hand and having a unified consciousness and mind on the other.


1988 ◽  
Vol 66 (3) ◽  
pp. 803-810 ◽  
Author(s):  
Michael P. Rastatter ◽  
Catherine Loren

The current study investigated the capacity of the right hemisphere to process verbs using a paradigm proven reliable for predicting differential, minor hemisphere lexical analysis in the normal, intact brain. Vocal reaction times of normal subjects were measured to unilaterally presented verbs of high and of low frequency. A significant interaction was noted between the stimulus items and visual fields. Post hoc tests showed that vocal reaction times to verbs of high frequency were significantly faster following right visual-field presentations (right hemisphere). No significant differences in vocal reaction time occurred between the two visual fields for the verbs of low frequency. Also, significant differences were observed between the two types of verbs following left visual-field presentation but not the right. These results were interpreted to suggest that right-hemispheric analysis was restricted to the verbs of high frequency in the presence of a dominant left hemisphere.


1981 ◽  
Vol 52 (2) ◽  
pp. 487-490 ◽  
Author(s):  
Ronald A. La Torre ◽  
Anne-Marie La Torre

Fourth grade children responded to verbal and spatial problems drawn from the Wechsler Intelligence Scale for Children. 24 responded to verbal problems while attending to the right visual field and to spatial problems while attending to the left visual field; 24 fixed attention to the left visual field during verbal problems and to the right visual field during spatial problems. A final 24 children fixed their attention centrally while responding to both sets of problems. There were no significant differences among the groups for verbal performance. Spatial problems were dealt with least effectively during right visual-field eye-fixation. Perhaps right visual-field fixation during a spatial task leads to interference with capacity and from functional distance. Left visual-field fixation might be facilitating as a result of functional closeness but this facilitation is offset by interference with capacity making the over-all result not significantly different from that for the control group. Verbal centers may be insulated against effects of interference.


2004 ◽  
Vol 16 (9) ◽  
pp. 1576-1582 ◽  
Author(s):  
Matia Okubo ◽  
Chikashi Michimata

Right-handed participants performed categorical and coordinate spatial relation tasks on stimuli presented either to the left visual field-right hemisphere (LVF-RH) or to the right visual field-left hemisphere (RVF-LH). The stimuli were either unfiltered or low-pass filtered (i.e., devoid of high spatial frequency content). Consistent with previous studies, the unfiltered condition produced a significant RVF-LH advantage for the categorical task and an LVF-RH advantage for the coordinate task. Low-pass filtering eliminated this Task × Visual Field interaction; thus, the RVF-LH advantage disappeared for the categorical task. The present results suggest that processing of high spatial frequency contributes to the left hemispheric advantage for categorical spatial processing.


1994 ◽  
Vol 6 (1) ◽  
pp. 26-45 ◽  
Author(s):  
Mark Beeman ◽  
Rhonda B. Friedman ◽  
Jordan Grafman ◽  
Enrique Perez ◽  
Sherri Diamond ◽  
...  

There are now numerous observations of subtle right hemisphere (RH) contributions to language comprehension. It has been suggested that these contributions reflect coarse semantic coding in the RH. That is, the RH weakly activates large semantic fields—including concepts distantly related to the input word—whereas the left hemisphere (LH) strongly activates small semantic fields—limited to concepts closely related to the input (Beeman, 1993a,b). This makes the RH less effective at interpreting single words, but more sensitive to semantic overlap of multiple words. To test this theory, subjects read target words preceded by either “Summation” primes (three words each weakly related to the target) or Unrelated primes (three unrelated words), and target exposure duration was manipulated so that subjects correctly named about half the target words in each hemifield. In Experiment 1, subjects benefited more from Summation primes when naming target words presented to the left visual field-RH (Ivf-RH) than when naming target words presented to the right visual field-LH (rvf-LH), suggesting a RH advantage in coarse semantic coding. In Experiment 2, with a low proportion of related prime-target trials, subjects benefited more from “Direct” primes (one strong associate flanked by two unrelated words) than from Summation primes for rvf-LH target words, indicating that the LH activates closely related information much more strongly than distantly related information. Subjects benefited equally from both prime types for Ivf-RH target words, indicating that the RH activates closely related information only slightly more strongly, at best, than distantly related information. This suggests that the RH processes words with relatively coarser coding than the LH, a conclusion consistent with a recent suggestion that the RH coarsely codes visual input (Kosslyn, Chabris, Mar-solek, & Koenig, 1992).


2002 ◽  
Vol 14 (7) ◽  
pp. 971-979 ◽  
Author(s):  
Shuhei Yamaguchi ◽  
Genya Toyoda ◽  
Jiang Xu ◽  
Shotai Kobayashi ◽  
Avishai Henik

The neural activities for color word interference effects were investigated using event-related brain potentials (ERPs) recorded in a flanker-type interference task. Kanji words (Japanese morphograms) and kana words (Japanese phono-grams) were used as the flanker stimuli to obtain insights about hemispheric specialization for processing two types of Japanese orthographies. Interference effects in reaction time were larger when kanji words were presented in the left visual field and when kana words were in the right visual field. ERPs were modulated by the incongruent flankers, which generated a negative ERP component with the different onset and offset depending on flanker attributes. Consistent with the behavioral data, the interference-related negativity was observed for kanji words presented in the left visual field and for kana words in the right visual field. The negativity distributed maximally over the fronto-central site. The early part of the negativity distributed strongly over the frontal midline area, whereas it extended bilaterally over the frontal area in the late phase. The present results support the view of preferential processing of kanji in the right hemisphere and that of kana in the left hemisphere. The temporal profile of scalp topographies for the interference-related neural activity suggests that the medial and dorsolateral prefrontal regions may be involved in maintaining attentional set and conflict resolution.


Sign in / Sign up

Export Citation Format

Share Document