hemisphere dominance
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 26)

H-INDEX

32
(FIVE YEARS 2)

2021 ◽  
pp. 1-8

OBJECTIVE Epilepsy surgery for older adults is controversial owing to their longer duration of epilepsy and perceived higher surgical risk. However, because of an aging population and documented benefit of epilepsy surgery, surgery is considered more frequently for these patients. The authors’ objective was to analyze the role of resective surgery in patients older than 60 years and to assess outcomes and safety. METHODS The authors conducted a retrospective analysis of 595 patients who underwent resective epilepsy surgery at their center from 1999 to 2018. Thirty-one patients aged 60 years or older were identified. Sixty patients younger than 60 years were randomly selected as controls. Population characteristics, results of presurgical evaluations, outcomes, and complications were analyzed. RESULTS No significant differences were found between the groups in terms of hemisphere dominance, side of surgery, presence of a lesion, and incidence of temporal lobe epilepsy. Epilepsy duration was greater in the older cohort (p = 0.019), and invasive EEG was more commonly employed in younger patients (p = 0.030). The rates of Engel class I outcome at 6 months, 1 year, and 2 years were 89.7%, 96.2%, and 94.7% for the older group and 75% (p = 0.159), 67.3% (p = 0.004), and 75.8% (p = 0.130) for the younger group, respectively. The proportion of seizure-free patients was greatest among those with temporal lobe epilepsy, particularly in the older group. Neurological complication rates did not differ significantly between groups, however medical and other minor complications occurred more frequently in the older group. CONCLUSIONS Patients older than 60 years had equal or better outcomes at 1 year after epilepsy surgery than younger patients. A trend toward a greater proportion of patients with lesional temporal lobe epilepsy was found in the older group. These results suggest that good seizure outcomes can be obtained in older patients despite longer duration of epilepsy.


2021 ◽  
Vol 15 ◽  
Author(s):  
E. Darcy Burgund

Major theories of hemisphere asymmetries in facial expression processing predict right hemisphere dominance for negative facial expressions of disgust, fear, and sadness, however, some studies observe left hemisphere dominance for one or more of these expressions. Research suggests that tasks requiring the identification of six basic emotional facial expressions (angry, disgusted, fearful, happy, sad, and surprised) are more likely to produce left hemisphere involvement than tasks that do not require expression identification. The present research investigated this possibility in two experiments that presented six basic emotional facial expressions to the right or left hemisphere using a divided-visual field paradigm. In Experiment 1, participants identified emotional expressions by pushing a key corresponding to one of six labels. In Experiment 2, participants detected emotional expressions by pushing a key corresponding to whether an expression was emotional or not. In line with predictions, fearful facial expressions exhibited a left hemisphere advantage during the identification task but not during the detection task. In contrast to predictions, sad expressions exhibited a left hemisphere advantage during both identification and detection tasks. In addition, happy facial expressions exhibited a left hemisphere advantage during the detection task but not during the identification task. Only angry facial expressions exhibited a right hemisphere advantage, and this was only observed when data from both experiments were combined. Together, results highlight the influence of task demands on hemisphere asymmetries in facial expression processing and suggest a greater role for the left hemisphere in negative expressions than predicted by previous theories.


2021 ◽  
Vol 15 ◽  
Author(s):  
Joyce B. Weersink ◽  
Natasha M. Maurits ◽  
Bauke M. de Jong

BackgroundWalking is characterized by stable antiphase relations between upper and lower limb movements. Such bilateral rhythmic movement patterns are neuronally generated at levels of the spinal cord and brain stem, that are strongly interconnected with cortical circuitries, including the Supplementary Motor Area (SMA).ObjectiveTo explore cerebral activity associated with multi-limb phase relations in human gait by manipulating mutual attunement of the upper and lower limb antiphase patterns.MethodsCortical activity and gait were assessed by ambulant EEG, accelerometers and videorecordings in 35 healthy participants walking normally and 19 healthy participants walking in amble gait, where upper limbs moved in-phase with the lower limbs. Power changes across the EEG frequency spectrum were assessed by Event Related Spectral Perturbation analysis and gait analysis was performed.ResultsAmble gait was associated with enhanced Event Related Desynchronization (ERD) prior to and during especially the left swing phase and reduced Event Related Synchronization (ERS) at final swing phases. ERD enhancement was most pronounced over the putative right premotor, right primary motor and right parietal cortex, indicating involvement of higher-order organization and somatosensory guidance in the production of this more complex gait pattern, with an apparent right hemisphere dominance. The diminished within-step ERD/ERS pattern in amble gait, also over the SMA, suggests that this gait pattern is more stride driven instead of step driven.ConclusionIncreased four-limb phase complexity recruits distributed networks upstream of the primary motor cortex, primarily lateralized in the right hemisphere. Similar parietal-premotor involvement has been described to compensate impaired SMA function in Parkinson’s disease bimanual antiphase movement, indicating a role as cortical support regions.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1135
Author(s):  
Aleksandra Janowska ◽  
Brianna Balugas ◽  
Matthew Pardillo ◽  
Victoria Mistretta ◽  
Katherine Chavarria ◽  
...  

While the desire to uncover the neural correlates of consciousness has taken numerous directions, self-face recognition has been a constant in attempts to isolate aspects of self-awareness. The neuroimaging revolution of the 1990s brought about systematic attempts to isolate the underlying neural basis of self-face recognition. These studies, including some of the first fMRI (functional magnetic resonance imaging) examinations, revealed a right-hemisphere bias for self-face recognition in a diverse set of regions including the insula, the dorsal frontal lobe, the temporal parietal junction, and the medial temporal cortex. In this systematic review, we provide confirmation of these data (which are correlational) which were provided by TMS (transcranial magnetic stimulation) and patients in which direct inhibition or ablation of right-hemisphere regions leads to a disruption or absence of self-face recognition. These data are consistent with a number of theories including a right-hemisphere dominance for self-awareness and/or a right-hemisphere specialization for identifying significant social relationships, including to oneself.


2021 ◽  
Vol 11 (7) ◽  
pp. 823
Author(s):  
Elisabetta Làdavas ◽  
Caterina Bertini

The present review will focus on evidence demonstrating the prioritization in visual processing of fear-related signals in the absence of awareness. Evidence in hemianopic patients without any form of blindsight or affective blindsight in classical terms will be presented, demonstrating that fearful faces, via a subcortical colliculo-pulvinar-amygdala pathway, have a privileged unconscious visual processing and facilitate responses towards visual stimuli in the intact visual field. Interestingly, this fear-specific implicit visual processing in hemianopics has only been observed after lesions to the visual cortices in the left hemisphere, while no effect was found in patients with damage to the right hemisphere. This suggests that the subcortical route for emotional processing in the right hemisphere might provide a pivotal contribution to the implicit processing of fear, in line with evidence showing enhanced right amygdala activity and increased connectivity in the right colliculo-pulvinar-amygdala pathway for unconscious fear-conditioned stimuli and subliminal fearful faces. These findings will be discussed within a theoretical framework that considers the amygdala as an integral component of a constant and continuous vigilance system, which is preferentially invoked with stimuli signaling ambiguous environmental situations of biological relevance, such as fearful faces.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 906
Author(s):  
Maria Loconsole ◽  
Elena Mascalzoni ◽  
Jonathan Niall Daisley ◽  
Massimo De Agrò ◽  
Giorgio Vallortigara ◽  
...  

Declarative memory is an explicit, long-term memory system, used in generalization and categorization processes and to make inferences and to predict probable outcomes in novel situations. Animals have been proven to possess a similar declarative-like memory system. Here, we investigated declarative-like memory representations in young chicks, assessing the roles of the two hemispheres in memory recollection. Chicks were exposed for three consecutive days to two different arenas (blue/yellow), where they were presented with two panels, each depicting a different stimulus (cross/square). Only one of the two stimuli was rewarded, i.e., it hid a food reward. The position (left/right) of the rewarded stimulus remained constant within the same arena, but it differed between the two arenas (e.g., reward always on the left in the blue context and on the right in the yellow one). At test, both panels depicted the rewarded stimulus, thus chicks had to remember food position depending on the previously experienced contextual rule. Both binocular and right-eye monocularly-tested chicks correctly located the reward, whereas left-eye monocularly-tested chicks performed at the chance level. We showed that declarative-like memory of integrated information is available at early stages of development, and it is associated with a left hemisphere dominance.


2021 ◽  
Author(s):  
Christina M Merrick ◽  
Tanner C Dixon ◽  
Assaf Breska ◽  
Jack J Lin ◽  
Edward F Chang ◽  
...  

Neurophysiological studies in humans and non-human primates have revealed movement representations in both the contralateral and ipsilateral hemisphere. Inspired by clinical observations, we ask if this bilateral representation differs for the left and right hemispheres. Electrocorticography (ECoG) was recorded in human participants during an instructed-delay reaching task, with movements produced with either the contralateral or ipsilateral arm. Using a cross-validated kinematic encoding model, we found stronger bilateral encoding in the left hemisphere, an effect that was present during preparation and was amplified during execution. Consistent with this asymmetry, we also observed better across-arm generalization in the left hemisphere, indicating similar neural representations for right and left arm movements. Notably, these left hemisphere electrodes were largely located over premotor and parietal regions. The more extensive bilateral encoding in the left hemisphere adds a new perspective to the pervasive neuropsychological finding that the left hemisphere plays a dominant role in praxis.


2021 ◽  
Author(s):  
Carmen Kohl ◽  
Tiina Parviainen ◽  
Stephanie R. Jones

AbstractAuditory evoked fields (AEFs) are commonly studied, yet their underlying neural mechanisms remain poorly understood. Here, we used the biophysical modelling software Human Neocortical Neurosolver (HNN) whose foundation is a canonical neocortical circuit model to interpret the cell and network mechanisms contributing to macroscale AEFs elicited by a simple tone, measured with magnetoencephalography. We found that AEFs can be reproduced by activating the neocortical circuit through a layer specific sequence of feedforward and feedback excitatory synaptic drives, similar to prior simulation of somatosensory evoked responses, supporting the notion that basic structures and activation patterns are preserved across sensory regions. We also applied the modeling framework to develop and test predictions on neural mechanisms underlying AEF differences in the left and right hemispheres, as well as in hemispheres contralateral and ipsilateral to the presentation of the auditory stimulus. We found that increasing the strength of the excitatory synaptic cortical feedback inputs to supragranular layers simulates the commonly observed right hemisphere dominance, while decreasing the input latencies and simultaneously increasing the number of cells contributing to the signal accounted for the contralateral dominance. These results provide a direct link between human data and prior animal studies and lay the foundation for future translational research examining the mechanisms underlying alteration in this fundamental biomarker of auditory processing in healthy cognition and neuropathology.


Sign in / Sign up

Export Citation Format

Share Document