scholarly journals Stochastic Reasoning, Free Energy, and Information Geometry

2004 ◽  
Vol 16 (9) ◽  
pp. 1779-1810 ◽  
Author(s):  
Shiro Ikeda ◽  
Toshiyuki Tanaka ◽  
Shun-ichi Amari

Belief propagation (BP) is a universal method of stochastic reasoning. It gives exact inference for stochastic models with tree interactions and works surprisingly well even if the models have loopy interactions. Its performance has been analyzed separately in many fields, such as AI, statistical physics, information theory, and information geometry. This article gives a unified framework for understanding BP and related methods and summarizes the results obtained in many fields. In particular, BP and its variants, including tree reparameterization and concave-convex procedure, are reformulated with information-geometrical terms, and their relations to the free energy function are elucidated from an information-geometrical viewpoint. We then propose a family of new algorithms. The stabilities of the algorithms are analyzed, and methods to accelerate them are investigated.

1983 ◽  
Vol 48 (10) ◽  
pp. 2888-2892 ◽  
Author(s):  
Vilém Kodýtek

A special free energy function is defined for a solution in the osmotic equilibrium with pure solvent. The partition function of the solution is derived at the McMillan-Mayer level and it is related to this special function in the same manner as the common partition function of the system to its Helmholtz free energy.


2021 ◽  
Vol 183 (3) ◽  
Author(s):  
Bart van Ginkel ◽  
Bart van Gisbergen ◽  
Frank Redig

AbstractWe study a model of active particles that perform a simple random walk and on top of that have a preferred direction determined by an internal state which is modelled by a stationary Markov process. First we calculate the limiting diffusion coefficient. Then we show that the ‘active part’ of the diffusion coefficient is in some sense maximal for reversible state processes. Further, we obtain a large deviations principle for the active particle in terms of the large deviations rate function of the empirical process corresponding to the state process. Again we show that the rate function and free energy function are (pointwise) optimal for reversible state processes. Finally, we show that in the case with two states, the Fourier–Laplace transform of the distribution, the moment generating function and the free energy function can be computed explicitly. Along the way we provide several examples.


PAMM ◽  
2014 ◽  
Vol 14 (1) ◽  
pp. 151-152
Author(s):  
Stephan Schwarz ◽  
Philipp Junker ◽  
Klaus Hackl

Author(s):  
Garrett M. Morris ◽  
David S. Goodsell ◽  
Robert S. Halliday ◽  
Ruth Huey ◽  
William E. Hart ◽  
...  

2019 ◽  
Vol 19 (03) ◽  
pp. 1950032 ◽  
Author(s):  
Yu Zhou ◽  
Jianying Hu ◽  
Zishun Liu

Proposed herein is a new theory for the anisotropic deformation of fiber-reinforced hydrogels. This new model takes into account the real fabrication of the fiber-reinforced hydrogels, in which the hydrogels are polymerized with fibers and polymer solutions. The new free energy function is established by adding the anisotropic free energy component contributed by fibers into the Flory–Rehner model. The proposed model is implemented through a user-defined material subroutine (UMAT) in the finite element software package ABAQUS. In particular, the consistent tangent modulus is derived in detail. Then, several illustrative examples with analytical and numerical results are demonstrated. In order to study deformation behavior of natural materials, we design some simple bilayer structures to mimic the opening of seedpods and the closure of flowers, in which the buckling behavior of fiber-reinforced hydrogels have been demonstrated. We hope that the proposed approach may help to study more complex deformation phenomena in hydrogel structures.


Sign in / Sign up

Export Citation Format

Share Document