Pair Approximations of Takeover Dynamics in Regular Population Structures

2009 ◽  
Vol 17 (2) ◽  
pp. 203-229 ◽  
Author(s):  
Joshua L. Payne ◽  
Margaret J. Eppstein

In complex adaptive systems, the topological properties of the interaction network are strong governing influences on the rate of flow of information throughout the system. For example, in epidemiological models, the structure of the underlying contact network has a pronounced impact on the rate of spread of infectious disease throughout a population. Similarly, in evolutionary systems, the topology of potential mating interactions (i.e., population structure) affects the rate of flow of genetic information and therefore affects selective pressure. One commonly employed method for quantifying selective pressure in evolutionary algorithms is through the analysis of the dynamics with which a single favorable mutation spreads throughout the population (a.k.a. takeover time analysis). While models of takeover dynamics have been previously derived for several specific regular population structures, these models lack generality. In contrast, so-called pair approximations have been touted as a general technique for rapidly approximating the flow of information in spatially structured populations with a constant (or nearly constant) degree of nodal connectivities, such as in epidemiological and ecological studies. In this work, we reformulate takeover time analysis in terms of the well-known Susceptible-Infectious-Susceptible model of disease spread and adapt the pair approximation for takeover dynamics. Our results show that the pair approximation, as originally formulated, is insufficient for approximating pre-equibilibrium dynamics, since it does not properly account for the interaction between the size and shape of the local neighborhood and the population size. After parameterizing the pair approximation to account for these influences, we demonstrate that the resulting pair approximation can serve as a general and rapid approximator for takeover dynamics on a variety of spatially-explicit regular interaction topologies with varying population sizes and varying uptake and reversion probabilities. Strengths, limitations, and potential applications of the pair approximation to evolutionary computation are discussed.

2019 ◽  
Vol 286 (1895) ◽  
pp. 20181949 ◽  
Author(s):  
Xiaojie Chen ◽  
Åke Brännström ◽  
Ulf Dieckmann

Dispersal is a key process for the emergence of social and biological behaviours. Yet, little attention has been paid to dispersal's effects on the evolution of cooperative behaviour in structured populations. To address this issue, we propose two new dispersal modes, parent-preferred and offspring-preferred dispersal, incorporate them into the birth–death update rule, and consider the resultant strategy evolution in the prisoner's dilemma on random-regular, small-world, and scale-free networks, respectively. We find that parent-preferred dispersal favours the evolution of cooperation in these different types of population structures, while offspring-preferred dispersal inhibits the evolution of cooperation in homogeneous populations. On scale-free networks when the strength of parent-preferred dispersal is weak, cooperation can be enhanced at intermediate strengths of offspring-preferred dispersal, and cooperators can coexist with defectors at high strengths of offspring-preferred dispersal. Moreover, our theoretical analysis based on the pair-approximation method corroborates the evolutionary outcomes on random-regular networks. We also incorporate the two new dispersal modes into three other update rules (death-birth, imitation, and pairwise comparison updating), and find that similar results about the effects of parent-preferred and offspring-preferred dispersal can again be observed in the aforementioned different types of population structures. Our work, thus, unveils robust effects of preferential dispersal modes on the evolution of cooperation in different interactive environments.


2021 ◽  
Author(s):  
Christoph Hauert ◽  
Michael Doebeli

Cooperative investments in social dilemmas can spontaneously diversify into stably co-existing high and low contributors in well-mixed populations. Here we extend the analysis to emerging diversity in (spatially) structured populations. Using pair approximation we derive analytical expressions for the invasion fitness of rare mutants in structured populations, which then yields a spatial adaptive dynamics framework. This allows us to predict changes arising from population structures in terms of existence and location of singular strategies, as well as their convergence and evolutionary stability as compared to well-mixed populations. Based on spatial adaptive dynamics and extensive individual based simulations, we find that spatial structure has significant and varied impacts on evolutionary diversification in continuous social dilemmas. More specifically, spatial adaptive dynamics suggests that spontaneous diversification through evolutionary branching is suppressed, but simulations show that spatial dimensions offer new modes of diversification that are driven by an interplay of finite-size mutations and population structures. Even though spatial adaptive dynamics is unable to capture these new modes, they can still be under-stood based on an invasion analysis. In particular, population structures alter invasion fitness and can open up new regions in trait space where mutants can invade, but that may not be accessible to small mutational steps. Instead, stochastically appearing larger mutations or sequences of smaller mutations in a particular direction are required to bridge regions of unfavourable traits. The net effect is that spatial structure tends to promote diversification, especially when selection is strong.


2021 ◽  
Vol 118 (42) ◽  
pp. e2105252118
Author(s):  
Christoph Hauert ◽  
Michael Doebeli

Cooperative investments in social dilemmas can spontaneously diversify into stably coexisting high and low contributors in well-mixed populations. Here we extend the analysis to emerging diversity in (spatially) structured populations. Using pair approximation, we derive analytical expressions for the invasion fitness of rare mutants in structured populations, which then yields a spatial adaptive dynamics framework. This allows us to predict changes arising from population structures in terms of existence and location of singular strategies, as well as their convergence and evolutionary stability as compared to well-mixed populations. Based on spatial adaptive dynamics and extensive individual-based simulations, we find that spatial structure has significant and varied impacts on evolutionary diversification in continuous social dilemmas. More specifically, spatial adaptive dynamics suggests that spontaneous diversification through evolutionary branching is suppressed, but simulations show that spatial dimensions offer new modes of diversification that are driven by an interplay of finite-size mutations and population structures. Even though spatial adaptive dynamics is unable to capture these new modes, they can still be understood based on an invasion analysis. In particular, population structures alter invasion fitness and can open up new regions in trait space where mutants can invade, but that may not be accessible to small mutational steps. Instead, stochastically appearing larger mutations or sequences of smaller mutations in a particular direction are required to bridge regions of unfavorable traits. The net effect is that spatial structure tends to promote diversification, especially when selection is strong.


Sign in / Sign up

Export Citation Format

Share Document