scholarly journals Parent-preferred dispersal promotes cooperation in structured populations

2019 ◽  
Vol 286 (1895) ◽  
pp. 20181949 ◽  
Author(s):  
Xiaojie Chen ◽  
Åke Brännström ◽  
Ulf Dieckmann

Dispersal is a key process for the emergence of social and biological behaviours. Yet, little attention has been paid to dispersal's effects on the evolution of cooperative behaviour in structured populations. To address this issue, we propose two new dispersal modes, parent-preferred and offspring-preferred dispersal, incorporate them into the birth–death update rule, and consider the resultant strategy evolution in the prisoner's dilemma on random-regular, small-world, and scale-free networks, respectively. We find that parent-preferred dispersal favours the evolution of cooperation in these different types of population structures, while offspring-preferred dispersal inhibits the evolution of cooperation in homogeneous populations. On scale-free networks when the strength of parent-preferred dispersal is weak, cooperation can be enhanced at intermediate strengths of offspring-preferred dispersal, and cooperators can coexist with defectors at high strengths of offspring-preferred dispersal. Moreover, our theoretical analysis based on the pair-approximation method corroborates the evolutionary outcomes on random-regular networks. We also incorporate the two new dispersal modes into three other update rules (death-birth, imitation, and pairwise comparison updating), and find that similar results about the effects of parent-preferred and offspring-preferred dispersal can again be observed in the aforementioned different types of population structures. Our work, thus, unveils robust effects of preferential dispersal modes on the evolution of cooperation in different interactive environments.

2015 ◽  
Author(s):  
Jorge Peña ◽  
Bin Wu ◽  
Arne Traulsen

AbstractSpatial structure greatly affects the evolution of cooperation. While in two-player games the condition for cooperation to evolve depends on a single structure coefficient, in multiplayer games the condition might depend on several structure coefficients, making it difficult to compare different population structures. We propose a solution to this issue by introducing two simple ways of ordering population structures: the containment order and the volume order. If population structure 𝒮1 is greater than population structure 𝒮2 in the containment or the volume order, then 𝒮1 can be considered a stronger promoter of cooperation. We provide conditions for establishing the containment order, give general results on the volume order, and illustrate our theory by comparing different models of spatial games and associated update rules. Our results hold for a large class of population structures and can be easily applied to specific cases once the structure coefficients have been calculated or estimated.


2004 ◽  
Vol 15 (08) ◽  
pp. 1075-1086 ◽  
Author(s):  
SUBHASIS BANERJEE ◽  
SHRESTHA BASU MALLICK ◽  
INDRANI BOSE

We study the discrete Gierer–Meinhardt model of reaction–diffusion on three different types of networks: regular, random and scale-free. The model dynamics lead to the formation of stationary Turing patterns in the steady state in certain parameter regions. Some general features of the patterns are studied through numerical simulation. The results for the random and scale-free networks show a marked difference from those in the case of the regular network. The difference may be ascribed to the small world character of the first two types of networks.


2016 ◽  
Vol 13 (114) ◽  
pp. 20150881 ◽  
Author(s):  
Jorge Peña ◽  
Bin Wu ◽  
Arne Traulsen

Spatial structure greatly affects the evolution of cooperation. While in two-player games the condition for cooperation to evolve depends on a single structure coefficient, in multiplayer games the condition might depend on several structure coefficients, making it difficult to compare different population structures. We propose a solution to this issue by introducing two simple ways of ordering population structures: the containment order and the volume order. If population structure is greater than population structure in the containment or the volume order, then can be considered a stronger promoter of cooperation. We provide conditions for establishing the containment order, give general results on the volume order, and illustrate our theory by comparing different models of spatial games and associated update rules. Our results hold for a large class of population structures and can be easily applied to specific cases once the structure coefficients have been calculated or estimated.


2017 ◽  
Vol 23 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Genki Ichinose ◽  
Hiroki Sayama

It is well known that cooperation cannot be an evolutionarily stable strategy for a non-iterative game in a well-mixed population. In contrast, structured populations favor cooperation, since cooperators can benefit each other by forming local clusters. Previous studies have shown that scale-free networks strongly promote cooperation. However, little is known about the invasion mechanism of cooperation in scale-free networks. To study microscopic and macroscopic behaviors of cooperators' invasion, we conducted computational experiments on the evolution of cooperation in scale-free networks where, starting from all defectors, cooperators can spontaneously emerge by mutation. Since the evolutionary dynamics are influenced by the definition of fitness, we tested two commonly adopted fitness functions: accumulated payoff and average payoff. Simulation results show that cooperation is strongly enhanced with the accumulated payoff fitness compared to the average payoff fitness. However, the difference between the two functions decreases as the average degree increases. As the average degree increases, cooperation decreases for the accumulated payoff fitness, while it increases for the average payoff fitness. Moreover, for the average payoff fitness, low-degree nodes play a more important role in spreading cooperative strategies than for the accumulated payoff fitness.


2008 ◽  
Vol 22 (05) ◽  
pp. 553-560 ◽  
Author(s):  
WU-JIE YUAN ◽  
XIAO-SHU LUO ◽  
PIN-QUN JIANG ◽  
BING-HONG WANG ◽  
JIN-QING FANG

When being constructed, complex dynamical networks can lose stability in the sense of Lyapunov (i. s. L.) due to positive feedback. Thus, there is much important worthiness in the theory and applications of complex dynamical networks to study the stability. In this paper, according to dissipative system criteria, we give the stability condition in general complex dynamical networks, especially, in NW small-world and BA scale-free networks. The results of theoretical analysis and numerical simulation show that the stability i. s. L. depends on the maximal connectivity of the network. Finally, we show a numerical example to verify our theoretical results.


2012 ◽  
Vol 20 (2) ◽  
pp. 301-319 ◽  
Author(s):  
Shade T. Shutters

Altruistic punishment occurs when an agent incurs a cost to punish another but receives no material benefit for doing so. Despite the seeming irrationality of such behavior, humans in laboratory settings routinely pay to punish others even in anonymous, one-shot settings. Costly punishment is ubiquitous among social organisms in general and is increasingly accepted as a mechanism for the evolution of cooperation. Yet if it is true that punishment explains cooperation, the evolution of altruistic punishment remains a mystery. In a series of computer simulations I give agents the ability to punish one another while playing a continuous prisoner's dilemma. In simulations without social structure, expected behavior evolves—agents do not punish and consequently no cooperation evolves. Likewise, in simulations with social structure but no ability to punish, no cooperation evolves. However, in simulations where agents are both embedded in a social structure and have the option to inflict costly punishment, cooperation evolves quite readily. This suggests a simple and broadly applicable explanation of cooperation for social organisms that have nonrandom social structure and a predisposition to punish one another. Results with scale-free networks further suggest that nodal degree distribution plays an important role in determining whether cooperation will evolve in a structured population.


2015 ◽  
Vol 26 (06) ◽  
pp. 1550067 ◽  
Author(s):  
Chao Gao ◽  
Lu Zhong ◽  
Xianghua Li ◽  
Zili Zhang ◽  
Ning Shi

Identifying influential nodes is of theoretical significance in many domains. Although lots of methods have been proposed to solve this problem, their evaluations are under single-source attack in scale-free networks. Meanwhile, some researches have speculated that the combinations of some methods may achieve more optimal results. In order to evaluate this speculation and design a universal strategy suitable for different types of networks under the consideration of multi-source attacks, this paper proposes an attribute fusion method with two independent strategies to reveal the correlation of existing ranking methods and indicators. One is based on feature union (FU) and the other is based on feature ranking (FR). Two different propagation models in the fields of recommendation system and network immunization are used to simulate the efficiency of our proposed method. Experimental results show that our method can enlarge information spreading and restrain virus propagation in the application of recommendation system and network immunization in different types of networks under the condition of multi-source attacks.


2019 ◽  
Vol 16 (152) ◽  
pp. 20180918 ◽  
Author(s):  
Jessie Renton ◽  
Karen M. Page

Cooperation is prevalent in nature, not only in the context of social interactions within the animal kingdom but also on the cellular level. In cancer, for example, tumour cells can cooperate by producing growth factors. The evolution of cooperation has traditionally been studied for well-mixed populations under the framework of evolutionary game theory, and more recently for structured populations using evolutionary graph theory (EGT). The population structures arising due to cellular arrangement in tissues, however, are dynamic and thus cannot be accurately represented by either of these frameworks. In this work, we compare the conditions for cooperative success in an epithelium modelled using EGT, to those in a mechanical model of an epithelium—the Voronoi tessellation (VT) model. Crucially, in this latter model, cells are able to move, and birth and death are not spatially coupled. We calculate fixation probabilities in the VT model through simulation and an approximate analytic technique and show that this leads to stronger promotion of cooperation in comparison with the EGT model.


Sign in / Sign up

Export Citation Format

Share Document