A Multilevel Memetic Algorithm for Large SAT-Encoded Problems

2012 ◽  
Vol 20 (4) ◽  
pp. 641-664 ◽  
Author(s):  
Noureddine Bouhmala

Many researchers have focused on the satisfiability problem and on many of its variants due to its applicability in many areas of artificial intelligence. This NP-complete problem refers to the task of finding a satisfying assignment that makes a Boolean expression evaluate to True. In this work, we introduce a memetic algorithm that makes use of the multilevel paradigm. The multilevel paradigm refers to the process of dividing large and difficult problems into smaller ones, which are hopefully much easier to solve, and then work backward toward the solution of the original problem, using a solution from a previous level as a starting solution at the next level. Results comparing the memetic with and without the multilevel paradigm are presented using problem instances drawn from real industrial hardware designs.

2012 ◽  
Vol 12 (3&4) ◽  
pp. 283-292
Author(s):  
Artur Garcia-Saez ◽  
Jose I. Latorre

We construct a tensor network that delivers an unnormalized quantum state whose coefficients are the solutions to a given instance of 3SAT, an NP-complete problem. The tensor network contraction that corresponds to the norm of the state counts the number of solutions to the instance. It follows that exact contractions of this tensor network are in the \#P-complete computational complexity class, thus believed to be a hard task. Furthermore, we show that for a 3SAT instance with $n$ bits, it is enough to perform a polynomial number of contractions of the tensor network structure associated to the computation of local observables to obtain one of the explicit solutions to the problem, if any. Physical realization of a state described by a generic tensor network is equivalent to finding the satisfying assignment of a 3SAT instance and, consequently, this experimental task is expected to be hard.


Author(s):  
Mathias Soeken ◽  
Rolf Drechsler ◽  
Reinhard X. Fischer

AbstractThe atomic distribution in crystal structures becomes very complex if atoms are disordered and randomly distributed over positions not being fully occupied. Interatomic distances between neighboring atoms might be too close for simultaneous occupancies and thus are mutually exclusive. The distribution of atoms over crystallographic positions avoiding close contacts with neighboring atoms represents an NP-complete problem that is believed to have no efficient solution. Here, we use Boolean satisfiability (SAT) techniques to find a valid atomic distribution pattern in the crystal structure. Distance constraints are encoded as conjunctions of logical disjunctions over Boolean variables and handed to a SAT solver. If a solution exists, the solver supplies a satisfying assignment to the Boolean variables yielding a valid distribution after decoding. That way the hitherto unsolved problem of distributing


2001 ◽  
Vol 34 (44) ◽  
pp. 9555-9567 ◽  
Author(s):  
Tomohiro Sasamoto ◽  
Taro Toyoizumi ◽  
Hidetoshi Nishimori

2021 ◽  
Vol 76 (4) ◽  
Author(s):  
Marta Borowiecka-Olszewska ◽  
Ewa Drgas-Burchardt ◽  
Nahid Yelene Javier-Nol ◽  
Rita Zuazua

AbstractWe consider arc colourings of oriented graphs such that for each vertex the colours of all out-arcs incident with the vertex and the colours of all in-arcs incident with the vertex form intervals. We prove that the existence of such a colouring is an NP-complete problem. We give the solution of the problem for r-regular oriented graphs, transitive tournaments, oriented graphs with small maximum degree, oriented graphs with small order and some other classes of oriented graphs. We state the conjecture that for each graph there exists a consecutive colourable orientation and confirm the conjecture for complete graphs, 2-degenerate graphs, planar graphs with girth at least 8, and bipartite graphs with arboricity at most two that include all planar bipartite graphs. Additionally, we prove that the conjecture is true for all perfect consecutively colourable graphs and for all forbidden graphs for the class of perfect consecutively colourable graphs.


Author(s):  
Lance Fortnow

This chapter demonstrates several approaches for dealing with hard problems. These approaches include brute force, heuristics, and approximation. Typically, no single technique will suffice to handle the difficult NP problems one needs to solve. For moderate-sized problems one can search over all possible solutions with the very fast computers available today. One can use algorithms that might not work for every problem but do work for many of the problems one cares about. Other algorithms may not find the best possible solution but still a solution that's good enough. Other times one just cannot get a solution for an NP-complete problem. One has to try to solve a different problem or just give up.


Author(s):  
F. W. Albalas ◽  
B. A. Abu-Alhaija ◽  
A. Awajan ◽  
A. Awajan ◽  
Khalid Al-Begain

New web technologies have encouraged the deployment of various network applications that are rich with multimedia and real-time services. These services demand stringent requirements are defined through Quality of Service (QoS) parameters such as delay, jitter, loss, etc. To guarantee the delivery of these services QoS routing algorithms that deal with multiple metrics are needed. Unfortunately, QoS routing with multiple metrics is considered an NP-complete problem that cannot be solved by a simple algorithm. This paper proposes three source based QoS routing algorithms that find the optimal path from the service provider to the user that best satisfies the QoS requirements for a particular service. The three algorithms use the same filtering technique to prune all the paths that do not meet the requirements which solves the complexity of NP-complete problem. Next, each of the three algorithms integrates a different Multiple Criteria Decision Making method to select one of the paths that have resulted from the route filtering technique. The three decision making methods used are the Analytic Hierarchy Process (AHP), Multi-Attribute Utility Theory (MAUT), and Kepner-Tregoe KT. Results show that the algorithms find a path using multiple constraints with a high ability to handle multimedia and real-time applications.


Author(s):  
D. Sirisha ◽  
G. Vijayakumari

Compute intensive applications featured as workflows necessitate Heterogeneous Processing Systems (HPS) for attaining high performance to minimize the turnaround time. Efficient scheduling of the workflow tasks is paramount to attain higher potentials of HPS and is a challenging NP-Complete problem. In the present work, Branch and Bound (BnB) strategy is applied to optimally schedule the workflow tasks. The proposed bounds are tighter, simpler and less complex than the existing bounds and the upper bound is closer to the exact solution. Moreover, the bounds on the resource provisioning are devised to execute the workflows in the minimum possible time and optimally utilize the resources. The performance of the proposed BnB strategy is evaluated on a suite of benchmark workflows. The experimental results reveal that the proposed BnB strategy improved the optimal solutions compared to the existing heuristic scheduling algorithms for more than 20 percent of the cases and generated better schedules over 7 percent for 82.6 percent of the cases.


Sign in / Sign up

Export Citation Format

Share Document