local observables
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 23)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Vol 11 (6) ◽  
Author(s):  
Katja Klobas ◽  
Bruno Bertini

We study the entanglement dynamics generated by quantum quenches in the quantum cellular automaton Rule 54. We consider the evolution from a recently introduced class of solvable initial states. States in this class relax (locally) to a one-parameter family of Gibbs states and the thermalisation dynamics of local observables can be characterised exactly by means of an evolution in space. Here we show that the latter approach also gives access to the entanglement dynamics and derive exact formulas describing the asymptotic linear growth of all Rényi entropies in the thermodynamic limit and their eventual saturation for finite subsystems. While in the case of von Neumann entropy we recover exactly the predictions of the quasiparticle picture, we find no physically meaningful quasiparticle description for other Rényi entropies. Our results apply to both homogeneous and inhomogeneous quenches.


2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Etienne Granet ◽  
Fabian Essler

We consider the time evolution of local observables after an interaction quench in the repulsive Lieb-Liniger model. The system is initialized in the ground state for vanishing interaction and then time-evolved with the Lieb-Liniger Hamiltonian for large, finite interacting strength c. We employ the Quench Action approach to express the full time evolution of local observables in terms of sums over energy eigenstates and then derive the leading terms of a 1/c expansion for several one and two-point functions as a function of time t>0 after the quantum quench. We observe delicate cancellations of contributions to the spectral sums that depend on the details of the choice of representative state in the Quench Action approach and our final results are independent of this choice. Our results provide a highly non-trivial confirmation of the typicality assumptions underlying the Quench Action approach.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
A. Bochniak ◽  
L. Hadasz ◽  
P. Korcyl ◽  
B. Ruba

Abstract We study a simple lattice model with local symmetry, whose construction is based on a crossed module of finite groups. Its dynamical degrees of freedom are associated both to links and faces of a four-dimensional lattice. In special limits the discussed model reduces to certain known topological quantum field theories. In this work we focus on its dynamics, which we study both analytically and using Monte Carlo simulations. We prove a factorization theorem which reduces computation of correlation functions of local observables to known, simpler models. This, combined with standard Krammers-Wannier type dualities, allows us to propose a detailed phase diagram, which form is then confirmed in numerical simulations. We describe also topological charges present in the model, its symmetries and symmetry breaking patterns. The corresponding order parameters are the Polyakov loop and its generalization, which we call a Polyakov surface. The latter is particularly interesting, as it is beyond the scope of the factorization theorem. As shown by the numerical results, expectation value of Polyakov surface may serve to detects all phase transitions and is sensitive to a value of the topological charge.


2021 ◽  
Vol 2 ◽  
Author(s):  
Benjamin Dawson ◽  
Nicholas Furtak-Wells ◽  
Thomas Mann ◽  
Gin Jose ◽  
Almut Beige

The local observables of the quantised electromagnetic field near a mirror-coated interface depend strongly on the properties of the media on both sides. In macroscopic quantum electrodynamics, this fact is taken into account with the help of optical Green’s functions which correlate the position of an observer with all other spatial positions and photon frequencies. Here we present an alternative, more intuitive approach and obtain the local field observables with the help of a quantum mirror image detector method. In order to correctly normalise electric field operators, we demand that spontaneous atomic decay rates simplify to their respective free space values far away from the reflecting surface. Our approach is interesting, since mirror-coated interfaces constitute a common basic building block for quantum photonic devices.


Author(s):  
Albert Cabot ◽  
Gian Luca Giorgi ◽  
Roberta Zambrini

The possibility of detuned spins displaying synchronous oscillations in local observables is analysed in the presence of coupling, collective dissipation and incoherent pumping. We show that there exist two distinct scenarios in which synchronization can emerge, related respectively to the presence of a non-degenerate long-lived eigenmode and to the presence of a single-frequency regime. Both scenarios can arise by tuning parameters in this system, owing to the presence of coalascence. The former, known as transient synchronization, is here generalized in the presence of incoherent pumping, and is due to long-lasting coherences leading to a progressive frequency selection. On the other hand, in spite of the spins detuning, the dynamics can be governed by a single frequency. Still, we show that synchronization can be established only after a transient, when phase-locking arises. Spectral features of synchronization in these two scenarios are analysed for two-time correlations.


2021 ◽  
Vol 965 ◽  
pp. 115332
Author(s):  
O. Borisenko ◽  
V. Chelnokov ◽  
E. Mendicelli ◽  
A. Papa

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
M. Cerezo ◽  
Akira Sone ◽  
Tyler Volkoff ◽  
Lukasz Cincio ◽  
Patrick J. Coles

AbstractVariational quantum algorithms (VQAs) optimize the parameters θ of a parametrized quantum circuit V(θ) to minimize a cost function C. While VQAs may enable practical applications of noisy quantum computers, they are nevertheless heuristic methods with unproven scaling. Here, we rigorously prove two results, assuming V(θ) is an alternating layered ansatz composed of blocks forming local 2-designs. Our first result states that defining C in terms of global observables leads to exponentially vanishing gradients (i.e., barren plateaus) even when V(θ) is shallow. Hence, several VQAs in the literature must revise their proposed costs. On the other hand, our second result states that defining C with local observables leads to at worst a polynomially vanishing gradient, so long as the depth of V(θ) is $${\mathcal{O}}(\mathrm{log}\,n)$$ O ( log n ) . Our results establish a connection between locality and trainability. We illustrate these ideas with large-scale simulations, up to 100 qubits, of a quantum autoencoder implementation.


2021 ◽  
Vol 81 (3) ◽  
Author(s):  
Szymon Sikora ◽  
Krzysztof Głód

AbstractWe construct an approximate solution to the cosmological perturbation theory around Einstein–de Sitter background up to the fourth-order perturbations. This could be done with the help of the specific symmetry condition imposed on the metric, from which follows that the model density forms an infinite, cubic lattice. To verify the convergence of the perturbative construction, we express the resulting metric as a polynomial in the perturbative parameter and calculate the exact Einstein tensor. In our model, it seems that physical quantities averaged over large scales overlap with the respective Einstein–de Sitter prediction, while local observables could differ significantly from their background counterparts. As an example, we analyze the behavior of the local measurements of the Hubble constant and compare them with the Hubble constant of the homogeneous background model. A difference between these quantities is important in the context of a current Hubble tension problem.


2021 ◽  
Vol 20 (4) ◽  
pp. 2174-2203
Author(s):  
Animikh Biswas ◽  
Zachary Bradshaw ◽  
Michael S. Jolly

2020 ◽  
Vol 110 (12) ◽  
pp. 3243-3278
Author(s):  
Claudio Dappiaggi ◽  
Giuseppe Ruzzi ◽  
Ezio Vasselli

AbstractWe show that the Aharonov–Bohm effect finds a natural description in the setting of QFT on curved spacetimes in terms of superselection sectors of local observables. The extension of the analysis of superselection sectors from Minkowski spacetime to an arbitrary globally hyperbolic spacetime unveils the presence of a new quantum number labelling charged superselection sectors. In the present paper, we show that this “topological” quantum number amounts to the presence of a background flat potential which rules the behaviour of charges when transported along paths as in the Aharonov–Bohm effect. To confirm these abstract results, we quantize the Dirac field in the presence of a background flat potential and show that the Aharonov–Bohm phase gives an irreducible representation of the fundamental group of the spacetime labelling the charged sectors of the Dirac field. We also show that non-Abelian generalizations of this effect are possible only on spacetimes with a non-Abelian fundamental group.


Sign in / Sign up

Export Citation Format

Share Document