scholarly journals On the Time Course of Visual Word Recognition: An Event-related Potential Investigation using Masked Repetition Priming

2006 ◽  
Vol 18 (10) ◽  
pp. 1631-1643 ◽  
Author(s):  
Phillip J. Holcomb ◽  
Jonathan Grainger

The present study used event-related potentials (ERPs) to examine the time course of visual word recognition using a masked repetition priming paradigm. Participants monitored target words for occasional animal names, and ERPs were recorded to nonanimal critical items that were full repetitions, partial repetitions, or unrelated to the immediately preceding masked prime word. The results showed a strong modulation of the N400 and three earlier ERP components (P150, N250, and the P325) that we propose reflect sequential overlapping steps in the processing of printed words.

2004 ◽  
Vol 16 (2) ◽  
pp. 301-317 ◽  
Author(s):  
Alice Mado Proverbio ◽  
Liza Vecchi ◽  
Alberto Zani

Neuroimaging has provided evidence that the first stages of visual word recognition activate a visual word-form center localized in the left extrastriate cortex (fusiform gyrus). Accordingly, neurological cases of patients suffering from pure alexia reported the left posterior occipital lobe as the possible locus of orthographic analysis. There is less agreement in the literature about which brain structures are involved in the subsequent stages of word processing and, in particular, their time course of activation. Functional magnetic resonance imaging and magnetic source imaging studies recently reported data that could indicate a dual route model of reading. These findings are particularly relevant to studies on the functional deficits associated with phonological and surface dyslexia. There is evidence for the existence of two different brain mechanisms supporting phonological processing in visual word recognition: one mechanism subserving “assembled phonology” for reading letter strings and another one subserving “addressed phonology” for reading meaningful words. However, available knowledge on the time course and neural locus of grapheme-to-phoneme conversion mechanisms in reading is still inadequate. In this study, we compared processing of meaningful and meaningless Italian words in a task requiring a phonemic/phonetic decision task. Stimuli were 1152 different orthographic stimuli presented in the central visual field. Half the stimuli were Italian words (with a high or low frequency of occurrence), the other half were meaningless strings of letters (legal pseudowords and letter strings). Event-related potentials were recorded from 28 scalp sites in 10 Italian university students. The task consisted of deciding about the presence/absence of a given “phone” in the hypothetical enunciation of word read: for example, “Is there a/k/in cheese?”. Results showed that lexical frequency and orthographical regularity affected linguistic processing within 150 msec poststimulus. Indeed, the amplitude of a centroparietal P150 varied as a function of stimulus type, being larger in response to high-frequency words than to lowfrequency ones and to words and pseudowords than to letter strings. This component might index visual categorization processes and recognition of familiar objects, being highly sensitive to orthographic regularity and “ill-formedness” of words. The amplitude of the P150 was the same in response to well-formed meaningless and to meaningful words, when these latter had a low lexical frequency. This might indicate that highly familiar words are recognized as meaningful unitary visual objects at very early stages of processing, through a visual route to an orthographic input lexicon. Moreover, the amplitude of the negativity recorded between 250 and 350 msec showed an anteroposterior topographic dissociation for access to the phonemic representation of wellor ill-formed strings of characters. Brain responses were larger over the left occipito-temporal regions during reading of words and pseudowords and over the left frontal regions during reading of letter strings.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 304
Author(s):  
Kelsey Cnudde ◽  
Sophia van Hees ◽  
Sage Brown ◽  
Gwen van der Wijk ◽  
Penny M. Pexman ◽  
...  

Visual word recognition is a relatively effortless process, but recent research suggests the system involved is malleable, with evidence of increases in behavioural efficiency after prolonged lexical decision task (LDT) performance. However, the extent of neural changes has yet to be characterized in this context. The neural changes that occur could be related to a shift from initially effortful performance that is supported by control-related processing, to efficient task performance that is supported by domain-specific processing. To investigate this, we replicated the British Lexicon Project, and had participants complete 16 h of LDT over several days. We recorded electroencephalography (EEG) at three intervals to track neural change during LDT performance and assessed event-related potentials and brain signal complexity. We found that response times decreased during LDT performance, and there was evidence of neural change through N170, P200, N400, and late positive component (LPC) amplitudes across the EEG sessions, which suggested a shift from control-related to domain-specific processing. We also found widespread complexity decreases alongside localized increases, suggesting that processing became more efficient with specific increases in processing flexibility. Together, these findings suggest that neural processing becomes more efficient and optimized to support prolonged LDT performance.


2020 ◽  
Author(s):  
Kelsey Cnudde ◽  
Sophia van Hees ◽  
Sage Brown ◽  
Gwen van der Wijk ◽  
Penny M. Pexman ◽  
...  

Visual word recognition is perceived to remain relatively stable throughout adulthood, but recent research suggests the system involved is malleable, with evidence of behavioural changes after lexical decision task (LDT) practice. The potential for, and extent of, neural changes have yet to be elucidated in this context. If identified, these neural changes could be due to processes associated with learning, where performance that is initially effortful becomes efficient and supported by an optimized task network. Replicating the British Lexicon Project, participants completed 16 hours of LDT learning over several days. We recorded EEG at three intervals to track neural change during LDT learning and assessed event-related potentials and brain signal complexity. We found that response times decreased during LDT learning, and there was evidence of neural change through N170, P200, N400, and LPC amplitudes across the EEG sessions, suggesting alterations to both the general cognitive and specific lexical processes involved in LDT performance. We also found widespread complexity decreases alongside localized increases, suggesting that processing became more automatic with specific increases in processing flexibility. These findings suggest that the visual word recognition system is dynamic, and has the potential for plastic changes to support more efficient and automatic task performance.


2017 ◽  
Vol 76 (3) ◽  
pp. 143-150 ◽  
Author(s):  
Vera E. Golimbet ◽  
Zhanna V. Garakh ◽  
Yuliya Zaytseva ◽  
Margarita V. Alfimova ◽  
Tatyana V. Lezheiko ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fang Wang ◽  
Blair Kaneshiro ◽  
C. Benjamin Strauber ◽  
Lindsey Hasak ◽  
Quynh Trang H. Nguyen ◽  
...  

AbstractEEG has been central to investigations of the time course of various neural functions underpinning visual word recognition. Recently the steady-state visual evoked potential (SSVEP) paradigm has been increasingly adopted for word recognition studies due to its high signal-to-noise ratio. Such studies, however, have been typically framed around a single source in the left ventral occipitotemporal cortex (vOT). Here, we combine SSVEP recorded from 16 adult native English speakers with a data-driven spatial filtering approach—Reliable Components Analysis (RCA)—to elucidate distinct functional sources with overlapping yet separable time courses and topographies that emerge when contrasting words with pseudofont visual controls. The first component topography was maximal over left vOT regions with a shorter latency (approximately 180 ms). A second component was maximal over more dorsal parietal regions with a longer latency (approximately 260 ms). Both components consistently emerged across a range of parameter manipulations including changes in the spatial overlap between successive stimuli, and changes in both base and deviation frequency. We then contrasted word-in-nonword and word-in-pseudoword to test the hierarchical processing mechanisms underlying visual word recognition. Results suggest that these hierarchical contrasts fail to evoke a unitary component that might be reasonably associated with lexical access.


2005 ◽  
Vol 17 (11) ◽  
pp. 1803-1817 ◽  
Author(s):  
Manuel Carreiras ◽  
Marta Vergara ◽  
Horacio Barber

A number of behavioral studies have suggested that syllables might play an important role in visual word recognition in some languages. We report two event-related potential (ERP) experiments using a new paradigm showing that syllabic units modulate early ERP components. In Experiment 1, words and pseudowords were presented visually and colored so that there was a match or a mismatch between the syllable boundaries and the color boundaries. The results showed color-syllable congruency effects in the time window of the P200. Lexicality modulated the N400 amplitude, but no effects of this variable were obtained at the P200 window. In Experiment 2, high-and low-frequency words and pseudowords were presented in the congruent and incongruent conditions. The results again showed congruency effects at the P200 for low-frequency words and pseudowords, but not for high-frequency words. Lexicality and lexical frequency effects showed up at the N400 component. The results suggest a dissociation between syllabic and lexical effects with important consequences for models of visual word recognition.


2020 ◽  
Vol 146 ◽  
pp. 107556 ◽  
Author(s):  
Marta Vergara-Martínez ◽  
Manuel Perea ◽  
Barbara Leone-Fernandez

Sign in / Sign up

Export Citation Format

Share Document