multiscale entropy
Recently Published Documents


TOTAL DOCUMENTS

531
(FIVE YEARS 197)

H-INDEX

40
(FIVE YEARS 6)

2022 ◽  
Vol 12 ◽  
Author(s):  
Chenbin Ma ◽  
Haoran Xu ◽  
Muyang Yan ◽  
Jie Huang ◽  
Wei Yan ◽  
...  

Background: The autonomic nervous system (ANS) is crucial for acclimatization. Investigating the responses of acute exposure to a hypoxic environment may provide some knowledge of the cardiopulmonary system’s adjustment mechanism.Objective: The present study investigates the longitudinal changes and recovery in heart rate variability (HRV) in a young healthy population when exposed to a simulated plateau environment.Methods: The study followed a strict experimental paradigm in which physiological signals were collected from 33 healthy college students (26 ± 2 years, 171 cm ± 7 cm, 64 ± 11 kg) using a medical-grade wearable device. The subjects were asked to sit in normoxic (approximately 101 kPa) and hypoxic (4,000 m above sea level, about 62 kPa) environments. The whole experimental process was divided into four stable resting measurement segments in chronological order to analyze the longitudinal changes of physical stress and recovery phases. Seventy-six time-domain, frequency-domain, and non-linear indicators characterizing rhythm variability were analyzed in the four groups.Results: Compared to normobaric normoxia, participants in hypobaric hypoxia had significantly lower HRV time-domain metrics, such as RMSSD, MeanNN, and MedianNN (p < 0.01), substantially higher frequency domain metrics such as LF/HF ratio (p < 0.05), significantly lower Poincaré plot parameters such as SD1/SD2 ratio and other Poincaré plot parameters are reduced considerably (p < 0.01), and Refined Composite Multi-Scale Entropy (RCMSE) curves are reduced significantly (p < 0.01).Conclusion: The present study shows that elevated heart rates, sympathetic activation, and reduced overall complexity were observed in healthy subjects exposed to a hypobaric and hypoxic environment. Moreover, the results indicated that Multiscale Entropy (MSE) analysis of RR interval series could characterize the degree of minor physiological changes. This novel index of HRV can better explain changes in the human ANS.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Chun-ke Zhang ◽  
Lu Liu ◽  
Wen-jie Wu ◽  
Yi-qin Wang ◽  
Hai-xia Yan ◽  
...  

Background. Cardiovascular diseases have been always the most common cause of morbidity and mortality worldwide. Health monitoring of high-risk and suspected patients is essential. Currently, invasive coronary angiography is still the most direct and accurate method of determining the severity of coronary artery lesions, but it may not be the optimal clinical choice for suspected patients who had clinical symptoms of coronary heart disease (CHD) such as chest pain but no coronary artery lesion. Modern medical research indicates that radial pulse waves contain substantial pathophysiologic information about the cardiovascular and circulation systems; therefore, analysis of these waves could be a noninvasive technique for assessing cardiovascular disease. Objective. The objective of this study was to analyze the radial pulse wave to construct models for assessing the extent of coronary artery lesions based on pulse features and investigate the latent value of noninvasive detection technology based on pulse wave in the evaluation of cardiovascular disease, so as to promote the development of wearable devices and mobile medicine. Method. This study included 529 patients suspected of CHD who had undergone coronary angiography. Patients were sorted into a control group with no lesions, a 1 or 2 lesion group, and a multiple (3 or more) lesion group as determined by coronary angiography. The linear time-domain features and the nonlinear multiscale entropy features of their radial pulse wave signals were compared, and these features were used to construct models for identifying the range of coronary artery lesions using the k -nearest neighbor (KNN), decision tree (DT), and random forest (RF) machine learning algorithms. The average precision of these algorithms was then compared. Results. (1) Compared with the control group, the group with 1 or 2 lesions had increases in their radial pulse wave time-domain features H2/H1, H3/H1, and W2 ( P < 0.05 ), whereas the group with multiple lesions had decreases in MSE1, MSE2, MSE3, MSE4, and MSE5 ( P < 0.05 ). (2) Compared with the 1 or 2 lesion group, the multiple lesion group had increases in T1/T ( P < 0.05 ) and decreases in T and W1 ( P < 0.05 ). (3) The RF model for identifying numbers of coronary artery lesions had a higher average precision than the models built with KNN or DT. Furthermore, average precision of the model was highest (80.98%) if both time-domain features and multiscale entropy features of radial pulse signals were used to construct the model. Conclusion. Pulse wave signal can identify the range of coronary artery lesions with acceptable accuracy; this result is promising valuable for assessing the severity of coronary artery lesions. The technique could be used to development of mobile medical treatments or remote home monitoring systems for patients suspected or those at high risk of coronary atherosclerotic heart disease.


2021 ◽  
Author(s):  
Vijay Sreeparva ◽  
V.V Srini

Abstract In recent decades, human-induced climate change has caused a worldwide increase in the frequency/intensity/duration of extreme events, resulting in enormous disruptions to life and property. Hence, a comprehensive understanding of global-scale spatiotemporal trends and variability of extreme events at different intensity levels (e.g., moderate/severe/extreme) and durations (e.g., short-term/long-term) of normal, dry and wet conditions is essential in predicting/forecasting/mitigating future extreme events. This article analyses these aspects using estimates of a non-stationary standardized precipitation evapotranspiration index corresponding to different accumulation periods for 0.5˚ CRU resolution grids at globe-scale. Results are analyzed with respect to changes in land-use/landcover and location/geographic (latitude, longitude, elevation) indicators at different time scales (decadal/annual/seasonal/monthly) for each continent. The analysis showed an (i) increasing trend in the frequency/count of both dry and wet conditions and variability of dry conditions, and (ii) contrasting (decreasing) trend in the variability of wet conditions, possibly due to climate change-induced variations in atmospheric circulations. Globally, the highest variability in the wet and dry conditions is found during the Northern hemisphere's winter season. The decadal-scale analysis showed that change in variability in dry and wet conditions has been predominant from the 1930s and 1950s, respectively and is found to be increasing in recent decades.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1411
Author(s):  
Katsuhiko Kadota ◽  
Keiichi Onoda ◽  
Satoshi Abe ◽  
Chizuko Hamada ◽  
Shingo Mitaki ◽  
...  

Distinguishing progressive supranuclear palsy (PSP) from multiple system atrophy (MSA) in the early clinical stages is challenging; few sensitive and specific biomarkers are available for their differential diagnosis. Resting-state functional magnetic resonance imaging (rs-fMRI) is used to study the fluctuations in blood oxygen level-dependent (BOLD) signals at rest, which provides evidence for aberrant brain functional networks in neurodegenerative diseases. We aimed to examine whether rs-fMRI data could differentiate between PSP and MSA via a multiscale entropy (MSE) analysis of BOLD signals, which estimates the complexity of temporal fluctuations in brain activity. We recruited 14 and 18 patients with PSP and MSA, respectively, who underwent neuropsychological tests and rs-fMRI. PSP patients demonstrated greater cognitive function impairments, particularly in the frontal executive function. The bilateral prefrontal cortex revealed lower entropy BOLD signal values in multiple time scales for PSP, compared to the values observed in MSA patients; however, the functional connectivity of the representative brain networks was comparable between the diseases. The reduced complexity of BOLD signals in the prefrontal cortex was associated with frontal dysfunction. Thus, an MSE analysis of rs-fMRI could differentiate between PSP and MSA, and the reduced complexity of BOLD signals could be associated with cognitive impairment.


Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zafiris J. Daskalakis ◽  
Shawn M. McClintock ◽  
Itay Hadas ◽  
Elisa Kallioniemi ◽  
Reza Zomorrodi ◽  
...  

Abstract Background Electroconvulsive therapy (ECT) is the most effective treatment for treatment-resistant depression (TRD), especially for acute suicidal ideation, but the associated cognitive adverse effects and negative stigma limit its use. Another seizure therapy under development is magnetic seizure therapy (MST), which could potentially overcome the restrictions associated with ECT with similar efficacy. The neurophysiological targets and mechanisms of seizure therapy, however, remain poorly understood. Methods/design This neurophysiological study protocol is published as a companion to the overall Confirmatory Efficacy and Safety Trial of Magnetic Seizure Therapy for Depression (CREST-MST) protocol that describes our two-site, double-blind, randomized, non-inferiority clinical trial to develop MST as an effective and safe treatment for TRD. Our aim for the neurophysiological component of the study is to evaluate two biomarkers, one to predict remission of suicidal ideation (primary outcome) and the other to predict cognitive impairment (secondary outcome). Suicidal ideation will be assessed through cortical inhibition, which according to our preliminary studies, correlates with remission of suicidal ideation. Cortical inhibition will be measured with simultaneous transcranial magnetic stimulation (TMS) and electroencephalography (EEG), TMS-EEG, which measures TMS-evoked EEG activity. Cognitive adverse effects associated with seizure therapy, on the contrary, will be evaluated via multiscale entropy analysis reflecting the complexity of ongoing resting-state EEG activity. Discussion ECT and MST are known to influence cortical inhibition associated with depression, suicidal ideation severity, and clinical outcome. Therefore, evaluating cortical inhibition and brain temporal dynamics will help understand the pathophysiology of depression and suicidal ideation and define new biological targets that could aid clinicians in diagnosing and selecting treatments. Resting-state EEG complexity was previously associated with the degree of cognitive side effects after a seizure therapy. This neurophysiological metric may help clinicians assess the risk for adverse effects caused by these useful and effective treatments. Trial registration ClinicalTrials.govNCT03191058. Registered on June 19, 2017.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1620
Author(s):  
Airton Borin ◽  
Anne Humeau-Heurtier ◽  
Luiz Virgílio Silva ◽  
Luiz Murta

Multiscale entropy (MSE) analysis is a fundamental approach to access the complexity of a time series by estimating its information creation over a range of temporal scales. However, MSE may not be accurate or valid for short time series. This is why previous studies applied different kinds of algorithm derivations to short-term time series. However, no study has systematically analyzed and compared their reliabilities. This study compares the MSE algorithm variations adapted to short time series on both human and rat heart rate variability (HRV) time series using long-term MSE as reference. The most used variations of MSE are studied: composite MSE (CMSE), refined composite MSE (RCMSE), modified MSE (MMSE), and their fuzzy versions. We also analyze the errors in MSE estimations for a range of incorporated fuzzy exponents. The results show that fuzzy MSE versions—as a function of time series length—present minimal errors compared to the non-fuzzy algorithms. The traditional multiscale entropy algorithm with fuzzy counting (MFE) has similar accuracy to alternative algorithms with better computing performance. For the best accuracy, the findings suggest different fuzzy exponents according to the time series length.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1613
Author(s):  
Daniel Guerrero ◽  
Pedro Rivera ◽  
Gerardo Febres ◽  
Carlos Gershenson

The accurate description of a complex process should take into account not only the interacting elements involved but also the scale of the description. Therefore, there can not be a single measure for describing the associated complexity of a process nor a single metric applicable in all scenarios. This article introduces a framework based on multiscale entropy to characterize the complexity associated with the most identifiable characteristic of songs: the melody. We are particularly interested in measuring the complexity of popular songs and identifying levels of complexity that statistically explain the listeners’ preferences. We analyze the relationship between complexity and popularity using a database of popular songs and their relative position in a preferences ranking. There is a tendency toward a positive association between complexity and acceptance (success) of a song that is, however, not significant after adjusting for multiple testing.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1574
Author(s):  
Diego Marcos-Martínez ◽  
Víctor Martínez-Cagigal ◽  
Eduardo Santamaría-Vázquez ◽  
Sergio Pérez-Velasco ◽  
Roberto Hornero

Neurofeedback training (NFT) has shown promising results in recent years as a tool to address the effects of age-related cognitive decline in the elderly. Since previous studies have linked reduced complexity of electroencephalography (EEG) signal to the process of cognitive decline, we propose the use of non-linear methods to characterise changes in EEG complexity induced by NFT. In this study, we analyse the pre- and post-training EEG from 11 elderly subjects who performed an NFT based on motor imagery (MI–NFT). Spectral changes were studied using relative power (RP) from classical frequency bands (delta, theta, alpha, and beta), whilst multiscale entropy (MSE) was applied to assess EEG-induced complexity changes. Furthermore, we analysed the subject’s scores from Luria tests performed before and after MI–NFT. We found that MI–NFT induced a power shift towards rapid frequencies, as well as an increase of EEG complexity in all channels, except for C3. These improvements were most evident in frontal channels. Moreover, results from cognitive tests showed significant enhancement in intellectual and memory functions. Therefore, our findings suggest the usefulness of MI–NFT to improve cognitive functions in the elderly and encourage future studies to use MSE as a metric to characterise EEG changes induced by MI–NFT.


2021 ◽  
Author(s):  
Amir Omidvarnia ◽  
Raphael Liegeois ◽  
Enrico Amico ◽  
Giulia Preti ◽  
Andrew Zalesky ◽  
...  

Dynamic models of cortical activity, as measured by functional magnetic resonance imaging (fMRI), have recently brought out important insights into the organization of brain function. In terms of temporal complexity, these hemodynamic signals have been shown to exhibit critical behaviour at the edge between order and disorder. In this study, we aimed to revisit the properties and spatial distribution of temporal complexity in resting state and task fMRI of 100 unrelated subjects from the Human Connectome Project (HCP). First, we compared two common choices of complexity measures (i.e., Hurst exponent versus multiscale entropy) and reported high similarity between them. Second, we investigated the influence of experimental paradigms and found high task-specific complexity. We considered four mental tasks in the HCP database for the analysis: Emotion, Working memory, Social, and Language. Third, we tailored a recently-proposed statistical framework that incorporates the structural connectome, to assess the spatial distribution of complexity measures. These results highlight brain regions including parts of the default mode network and cingulate cortex with significantly stronger complex behaviour than the rest of the brain, irrespective of task. In sum, temporal complexity measures of fMRI are reliable markers of the cognitive status.


Sign in / Sign up

Export Citation Format

Share Document