Esmog Data: Interpreting Air Quality Through Media Art and Design

Leonardo ◽  
2018 ◽  
Vol 51 (2) ◽  
pp. 183-183
Author(s):  
Julián Jaramillo Arango

The article presents Esmog Data, an immersive installation exhibited in the Balance-Unbalance International Conference held in Manizales, Colombia in 2016. The piece explores the visualization and sonification of urban environmental data. Esmog Data works transforming sensor readings of different toxic gases into perceptible stimuli (audio and computer graphics). While air quality is a local everyday community issue, the goal of the project is enhancing environmental awareness. In this regard, the work aims to create a meaningful context for interpreting scientific data of the urban territory.

Author(s):  
Ahmad R. Alsaber ◽  
Jiazhu Pan ◽  
Adeeba Al-Hurban 

In environmental research, missing data are often a challenge for statistical modeling. This paper addressed some advanced techniques to deal with missing values in a data set measuring air quality using a multiple imputation (MI) approach. MCAR, MAR, and NMAR missing data techniques are applied to the data set. Five missing data levels are considered: 5%, 10%, 20%, 30%, and 40%. The imputation method used in this paper is an iterative imputation method, missForest, which is related to the random forest approach. Air quality data sets were gathered from five monitoring stations in Kuwait, aggregated to a daily basis. Logarithm transformation was carried out for all pollutant data, in order to normalize their distributions and to minimize skewness. We found high levels of missing values for NO2 (18.4%), CO (18.5%), PM10 (57.4%), SO2 (19.0%), and O3 (18.2%) data. Climatological data (i.e., air temperature, relative humidity, wind direction, and wind speed) were used as control variables for better estimation. The results show that the MAR technique had the lowest RMSE and MAE. We conclude that MI using the missForest approach has a high level of accuracy in estimating missing values. MissForest had the lowest imputation error (RMSE and MAE) among the other imputation methods and, thus, can be considered to be appropriate for analyzing air quality data.


Author(s):  
L. Marek ◽  
M. Campbell ◽  
M. Epton ◽  
M. Storer ◽  
S. Kingham

The opportunity of an emerging smart city in post-disaster Christchurch has been explored as a way to improve the quality of life of people suffering Chronic Obstructive Pulmonary Disease (COPD), which is a progressive disease that affects respiratory function. It affects 1 in 15 New Zealanders and is the 4th largest cause of death, with significant costs to the health system. While, cigarette smoking is the leading cause of COPD, long-term exposure to other lung irritants, such as air pollution, chemical fumes, or dust can also cause and exacerbate it. Currently, we do know little what happens to the patients with COPD after they leave a doctor’s care. By learning more about patients’ movements in space and time, we can better understand the impacts of both the environment and personal mobility on the disease. This research is studying patients with COPD by using GPS-enabled smartphones, combined with the data about their spatiotemporal movements and information about their actual usage of medication in near real-time. We measure environmental data in the city, including air pollution, humidity and temperature and how this may subsequently be associated with COPD symptoms. In addition to the existing air quality monitoring network, to improve the spatial scale of our analysis, we deployed a series of low-cost Internet of Things (IoT) air quality sensors as well. The study demonstrates how health devices, smartphones and IoT sensors are becoming a part of a new health data ecosystem and how their usage could provide information about high-risk health hotspots, which, in the longer term, could lead to improvement in the quality of life for patients with COPD.


Sign in / Sign up

Export Citation Format

Share Document