Brain Reading Using Full Brain Support Vector Machines for Object Recognition: There Is No “Face” Identification Area

2008 ◽  
Vol 20 (2) ◽  
pp. 486-503 ◽  
Author(s):  
Stephen José Hanson ◽  
Yaroslav O. Halchenko

Over the past decade, object recognition work has confounded voxel response detection with potential voxel class identification. Consequently, the claim that there are areas of the brain that are necessary and sufficient for object identification cannot be resolved with existing associative methods (e.g., the general linear model) that are dominant in brain imaging methods. In order to explore this controversy we trained full brain (40,000 voxels) single TR (repetition time) classifiers on data from 10 subjects in two different recognition tasks on the most controversial classes of stimuli (house and face) and show 97.4% median out-of-sample (unseen TRs) generalization. This performance allowed us to reliably and uniquely assay the classifier's voxel diagnosticity in all individual subjects' brains. In this two-class case, there may be specific areas diagnostic for house stimuli (e.g., LO) or for face stimuli (e.g., STS); however, in contrast to the detection results common in this literature, neither the fusiform face area nor parahippocampal place area is shown to be uniquely diagnostic for faces or places, respectively.

2013 ◽  
pp. 1516-1534
Author(s):  
Lochi Yu ◽  
Cristian Ureña

Since the first recordings of brain electrical activity more than 100 years ago remarkable contributions have been done to understand the brain functionality and its interaction with environment. Regardless of the nature of the brain-computer interface BCI, a world of opportunities and possibilities has been opened not only for people with severe disabilities but also for those who are pursuing innovative human interfaces. Deeper understanding of the EEG signals along with refined technologies for its recording is helping to improve the performance of EEG based BCIs. Better processing and features extraction methods, like Independent Component Analysis (ICA) and Wavelet Transform (WT) respectively, are giving promising results that need to be explored. Different types of classifiers and combination of them have been used on EEG BCIs. Linear, neural and nonlinear Bayesian have been the most used classifiers providing accuracies ranges between 60% and 90%. Some demand more computational resources like Support Vector Machines (SVM) classifiers but give good generality. Linear Discriminant Analysis (LDA) classifiers provide poor generality but low computational resources, making them optimal for some real time BCIs. Better classifiers must be developed to tackle the large patterns variability across different subjects by using every available resource, method or technology.


2018 ◽  
Author(s):  
Saskia de Vetter ◽  
Rutger Vos

SummaryTaxonomic experts classify millions of specimens, but this is very time-consuming and therefore expensive. Image analysis is a way to automate identification and was previously done at Naturalis Biodiversity Center for slipper orchids (Cypripedioideae) by the program ‘OrchID’. This program operated by extracting a pre-defined number of features from images, and these features were used to train artificial neural networks (ANN) to classify out-of-sample images. This program was extended to work for a collection of Javanese butterflies, donated to Naturalis by the Van Groenendael-Krijger Foundation. Originally, for the orchids, an image was divided into a pre-defined number of horizontal and vertical bins and the mean blue-green-red values of each bin were calculated (BGR method) to obtain image features. In the extended implementation, characteristic image features were extracted using the SURF algorithm implemented in OpenCV and clustered with the BagOfWords method (SURF-BOW method). In addition, a combination of BGR- and SURF-BOW was implemented to extract both types of features in a single dataset (BGR-SURF method). A selection of the butterfly and orchid images was made to create datasets with at least 5 and at most 50 specimens per species. The SURF-BOW and BGR-SURF methods were applied to both selected datasets, and the original BGR method was applied to the selected butterfly dataset. PCA plots were made to inspect visually how well the applied methods discriminated among the species. For the butterflies, both genus and species appeared to cluster together in the plots of the SURF-BOW method. However, no obvious clustering was noticeable for the orchid plots. The performance of the ANNs was validated by a stratified k-fold cross validation. For the butterflies, the BGR-SURF method scored best with an accuracy of 77%, against 71% for the SURF-BOW method and 66% for the BGR method, all for chained genus and species prediction with k = 10. The new methods could not improve the accuracy of the orchid classification with k = 10, which was 75% on genus, 52% on genus and section and 48% on genus, section and species in the original framework and now less than 25% for all. The validation results also showed that at least about 15 specimens per species were necessary for a good prediction with the SURF-BOW method. The BGR-SURF method was found to be the best of these methods for butterflies, but the original BGR method was best for the slipper orchids. In the future these methods may be tested with other datasets, for example with mosquitoes. In addition, other classifiers may be tested for better performance, like support vector machines.


Author(s):  
Lochi Yu ◽  
Cristian Ureña

Since the first recordings of brain electrical activity more than 100 years ago remarkable contributions have been done to understand the brain functionality and its interaction with environment. Regardless of the nature of the brain-computer interface BCI, a world of opportunities and possibilities has been opened not only for people with severe disabilities but also for those who are pursuing innovative human interfaces. Deeper understanding of the EEG signals along with refined technologies for its recording is helping to improve the performance of EEG based BCIs. Better processing and features extraction methods, like Independent Component Analysis (ICA) and Wavelet Transform (WT) respectively, are giving promising results that need to be explored. Different types of classifiers and combination of them have been used on EEG BCIs. Linear, neural and nonlinear Bayesian have been the most used classifiers providing accuracies ranges between 60% and 90%. Some demand more computational resources like Support Vector Machines (SVM) classifiers but give good generality. Linear Discriminant Analysis (LDA) classifiers provide poor generality but low computational resources, making them optimal for some real time BCIs. Better classifiers must be developed to tackle the large patterns variability across different subjects by using every available resource, method or technology.


2010 ◽  
Vol 22 (11) ◽  
pp. 2729-2762 ◽  
Author(s):  
Tanya Schmah ◽  
Grigori Yourganov ◽  
Richard S. Zemel ◽  
Geoffrey E. Hinton ◽  
Steven L. Small ◽  
...  

We compare 10 methods of classifying fMRI volumes by applying them to data from a longitudinal study of stroke recovery: adaptive Fisher's linear and quadratic discriminant; gaussian naive Bayes; support vector machines with linear, quadratic, and radial basis function (RBF) kernels; logistic regression; two novel methods based on pairs of restricted Boltzmann machines (RBM); and K-nearest neighbors. All methods were tested on three binary classification tasks, and their out-of-sample classification accuracies are compared. The relative performance of the methods varies considerably across subjects and classification tasks. The best overall performers were adaptive quadratic discriminant, support vector machines with RBF kernels, and generatively trained pairs of RBMs.


Sign in / Sign up

Export Citation Format

Share Document