Reactive robot system using a haptic interface: an active interaction to transfer skills from the robot to unskilled persons

2007 ◽  
Vol 21 (3-4) ◽  
pp. 267-291 ◽  
Author(s):  
Jorge Solis ◽  
Simone Marcheschi ◽  
Antonio Frisoli ◽  
Carlo Alberto Avizzano ◽  
Massimo Bergamasco
Actuators ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 245
Author(s):  
Takehito Kikuchi ◽  
Tetsumasa Takano ◽  
Akinori Yamaguchi ◽  
Asaka Ikeda ◽  
Isao Abe

Magnetorheological fluids (MRFs) are composite materials made of ferromagnetic particles, medium oils, and several types of additives. We have developed an actuation system for the fine haptic control of leader-follower robots. In this study, we developed a haptic interface with two link-type twin-driven MR fluid actuators and two MR fluid brakes for a teleoperation endoscopic surgery system and conducted evaluation tests for a remote operational task with a leader-follower robot system. For evaluations, we adopted the NASA-TLX questionnaire as a subjective assessment method. According to the experimental results, the total success rates were 0.462, 0.333, and 0.591, for the first haptic, middle no-haptic, and second haptic phases, respectively. The force information of the haptic forceps helped users to perceive grasping sensation on their fingers. Statistical analyses on the answers to the questionnaire indicate no significant differences. However, a decreasing tendency in the mental stress in the complicated manipulation tasks for fragile objects is observed.


2014 ◽  
Vol 134 (10) ◽  
pp. 913-920 ◽  
Author(s):  
Takahiro Endo ◽  
Yuta Kazama ◽  
Haruhisa Kawasaki
Keyword(s):  

10.29007/zw9k ◽  
2020 ◽  
Author(s):  
Kazuhide Nakata ◽  
Kazuki Umemoto ◽  
Kenji Kaneko ◽  
Ryusuke Fujisawa

This study addresses the development of a robot for inspection of old bridges. By suspending the robot with a wire and controlling the wire length, the movement of the robot is realized. The robot mounts a high-definition camera and aims to detect cracks on the concrete surface of the bridge using this camera. An inspection method using an unmanned aerial vehicle (UAV) has been proposed. Compared to the method using an unmanned aerial vehicle, the wire suspended robot system has the advantage of insensitivity to wind and ability to carry heavy equipments, this makes it possible to install a high-definition camera and a cleaning function to find cracks that are difficult to detect due to dirt.


2016 ◽  
Vol 9 (2) ◽  
pp. 125-135 ◽  
Author(s):  
Jingang Jiang ◽  
Zhao Wang ◽  
Yongde Zhang ◽  
Xiaoyang Yu ◽  
Xiaowei Guo ◽  
...  
Keyword(s):  

Author(s):  
Zheng Xiao

Background: In order to study the interference of wired transmission mode on robot motion, a mobile robot attitude calculation and debugging system based on radio frequency (RF) technology is proposed. Methods: Microcontroller STM32 has been used as the control core for the attitude information of the robot by using MEMS gyroscope and accelerometer. The optimal attitude Angle of the robot is calculated through nRF24L01 which is the core of the wireless communication module, attitude acquisition module and wireless data communication upper computer application platform. Results: The results shows that the positioning accuracy is better than±5mm. Conclusion: The experimental results show that the proposed attitude solving and debugging system of mobile robot based on RF technology has better reliability and real-time performance. The propped model is convenient for debugging of mobile robot system and has certain engineering application value.


Author(s):  
Hannu Lehtinen ◽  
Lauri Koskela ◽  
Hannu Sainio ◽  
Mika Matikainen ◽  
Karl-Johan Seren ◽  
...  
Keyword(s):  

2007 ◽  
Author(s):  
Nobutaka Kimura ◽  
Toshio Moriya ◽  
Kohsei Matsumoto
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document