COMPARISON BETWEEN FREQUENCY DOMAIN AND TIME DOMAIN METHODS FOR PARAMETER RECONSTRUCTION ON NONUNIFORM DISPERSIVE TRANSMISSION LINES - Abstract

2003 ◽  
Vol 17 (12) ◽  
pp. 1735-1737 ◽  
Author(s):  
J. Lundstedt ◽  
M. Norgren
Author(s):  
Saih Mohamed ◽  
Rouijaa Hicham ◽  
Ghammaz Abdelilah

<p>In this paper, we concentrate on the variety impacts of incident plane wave on multiconductor transmission lines, utilizing Branin’s method, which is alluded to as the method of characteristics. The model can be directly used for the time-domain and frequency-domain analyses, Moreover,  it had the advantage of being used without the need of setting the  preconditions of  the  charges  applied  to  its  ends; this permits it to be effortlessly embedded in circuit simulators, for example Spice, Saber, and Esacap. This model validity is affirmed by contrasting our simulation results under ESACAP and different results, and we will talk about variety impacts of incident plane wave.</p>


2003 ◽  
Vol 40 (3) ◽  
pp. 220-229 ◽  
Author(s):  
Pedro L. D. Peres ◽  
Carlos R. de Souza ◽  
Ivanil S. Bonatti

The aim of this note is to show that all the behaviour of a two-wire transmission line can be directly derived from the application of ABCD matrix mathematical concepts, avoiding the explicit use of differential equations. An important advantage of this approach is that the transmission line modelling arises naturally in the frequency domain. Therefore the consideration of frequency-dependent parameters can be carried out in a simple way compared with the time-domain. Some standard examples of transmission lines are analysed through the use of ABCD matrices and a case study of a balun network is presented.


Author(s):  
Saih Mohamed ◽  
Rouijaa Hicham ◽  
Ghammaz Abdelilah

<p>In this paper, we concentrate on the variety impacts of incident plane wave on multiconductor transmission lines, utilizing Branin’s method, which is alluded to as the method of characteristics. The model can be directly used for the time-domain and frequency-domain analyses, Moreover,  it had the advantage of being used without the need of setting the  preconditions of  the  charges  applied  to  its  ends; this permits it to be effortlessly embedded in circuit simulators, for example Spice, Saber, and Esacap. This model validity is affirmed by contrasting our simulation results under ESACAP and different results, and we will talk about variety impacts of incident plane wave.</p>


1993 ◽  
Vol 3 (3) ◽  
pp. 581-591 ◽  
Author(s):  
Wojciech Gwarek ◽  
Malgorzata Celuch-Marcysiak

2018 ◽  
Vol 12 (7-8) ◽  
pp. 76-83
Author(s):  
E. V. KARSHAKOV ◽  
J. MOILANEN

Тhe advantage of combine processing of frequency domain and time domain data provided by the EQUATOR system is discussed. The heliborne complex has a towed transmitter, and, raised above it on the same cable a towed receiver. The excitation signal contains both pulsed and harmonic components. In fact, there are two independent transmitters operate in the system: one of them is a normal pulsed domain transmitter, with a half-sinusoidal pulse and a small "cut" on the falling edge, and the other one is a classical frequency domain transmitter at several specially selected frequencies. The received signal is first processed to a direct Fourier transform with high Q-factor detection at all significant frequencies. After that, in the spectral region, operations of converting the spectra of two sounding signals to a single spectrum of an ideal transmitter are performed. Than we do an inverse Fourier transform and return to the time domain. The detection of spectral components is done at a frequency band of several Hz, the receiver has the ability to perfectly suppress all sorts of extra-band noise. The detection bandwidth is several dozen times less the frequency interval between the harmonics, it turns out thatto achieve the same measurement quality of ground response without using out-of-band suppression you need several dozen times higher moment of airborne transmitting system. The data obtained from the model of a homogeneous half-space, a two-layered model, and a model of a horizontally layered medium is considered. A time-domain data makes it easier to detect a conductor in a relative insulator at greater depths. The data in the frequency domain gives more detailed information about subsurface. These conclusions are illustrated by the example of processing the survey data of the Republic of Rwanda in 2017. The simultaneous inversion of data in frequency domain and time domain can significantly improve the quality of interpretation.


Sign in / Sign up

Export Citation Format

Share Document