An Illusory Contour Can Facilitate Visually Induced Self-Motion Perception

2018 ◽  
Vol 31 (8) ◽  
pp. 715-727
Author(s):  
Shinji Nakamura ◽  
Shin’ya Takahashi

Abstract Uniform motion of a visual stimulus induces an illusory perception of the observer’s self-body moving in the opposite direction (vection). The present study investigated whether vertical illusory contours can affect horizontal translational vection using abutting-line stimulus. The stimulus consisted of a number of horizontal line segments that moved horizontally at a constant speed. A group of vertically aligned segments created a ‘striped column’, while line segments in adjoining columns were shifted vertically to make a slight gap between them. In the illusory contour condition, the end points of the segments within the column were horizontally aligned to generate vertical illusory contours. In the condition with no illusory contour, these end points were not aligned within the column so that the illusory contour was not perceived. In the current study, 11 participants performed this experiment, and it was shown that stronger vection was induced in the illusory contour condition than in the condition with no illusory contour. The results of the current experiment provide novel evidence suggesting that non-luminance-defined visual features have a facilitative effect on visual self-motion perception.

2006 ◽  
Author(s):  
Frederick Bonato ◽  
Andrea Bubka

2021 ◽  
pp. 1-11
Author(s):  
Mario Faralli ◽  
Michele Ori ◽  
Giampietro Ricci ◽  
Mauro Roscini ◽  
Roberto Panichi ◽  
...  

BACKGROUND: Self-motion misperception has been observed in vestibular patients during asymmetric body oscillations. This misperception is correlated with the patient’s vestibular discomfort. OBJECTIVE: To investigate whether or not self-motion misperception persists in post-ictal patients with Ménière’s disease (MD). METHODS: Twenty-eight MD patients were investigated while in the post-ictal interval. Self-motion perception was studied by examining the displacement of a memorized visual target after sequences of opposite directed fast-slow asymmetric whole body rotations in the dark. The difference in target representation was analyzed and correlated with the Dizziness Handicap Inventory (DHI) score. The vestibulo-ocular reflex (VOR) and clinical tests for ocular reflex were also evaluated. RESULTS: All MD patients showed a noticeable difference in target representation after asymmetric rotation depending on the direction of the fast/slow rotations. This side difference suggests disruption of motion perception. The DHI score was correlated with the amount of motion misperception. In contrast, VOR and clinical trials were altered in only half of these patients. CONCLUSIONS: Asymmetric rotation reveals disruption of self-motion perception in MD patients during the post-ictal interval, even in the absence of ocular reflex impairment. Motion misperception may cause persistent vestibular discomfort in these patients.


2006 ◽  
Vol 3 (3) ◽  
pp. 194-216 ◽  
Author(s):  
Bernhard E. Riecke ◽  
Jörg Schulte-Pelkum ◽  
Marios N. Avraamides ◽  
Markus Von Der Heyde ◽  
Heinrich H. Bülthoff

1998 ◽  
Vol 42 (1-8) ◽  
pp. 273-280 ◽  
Author(s):  
D.E Parker ◽  
D.L Harm ◽  
G.R Sandoz ◽  
N.C Skinner

2006 ◽  
Vol 16 (1-2) ◽  
pp. 23-28 ◽  
Author(s):  
W. Geoffrey Wright ◽  
Paul DiZio ◽  
James R. Lackner

We evaluated the influence of moving visual scenes and knowledge of spatial and physical context on visually induced self-motion perception in an immersive virtual environment. A sinusoidal, vertically oscillating visual stimulus induced perceptions of self-motion that matched changes in visual acceleration. Subjects reported peaks of perceived self-motion in synchrony with peaks of visual acceleration and opposite in direction to visual scene motion. Spatial context was manipulated by testing subjects in the environment that matched the room in the visual scene or by testing them in a separate chamber. Physical context was manipulated by testing the subject while seated in a stable, earth-fixed desk chair or in an apparatus capable of large linear motions, however, in both conditions no actual motion occurred. The compellingness of perceived self-motion was increased significantly when the spatial context matched the visual input and actual body displacement was possible, however, the latency and amplitude of perceived self-motion were unaffected by the spatial or physical context. We propose that two dissociable processes are involved in self-motion perception: one process, primarily driven by visual input, affects vection latency and path integration, the other process, receiving cognitive input, drives the compellingness of perceived self-motion.


2002 ◽  
Vol 147 (1) ◽  
pp. 89-97 ◽  
Author(s):  
Georg Schweigart ◽  
Rey-Djin Chien ◽  
Thomas Mergner

Author(s):  
Kayoko Murata ◽  
Yoko Ozawa ◽  
Shigeru Ichihara

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261266
Author(s):  
Maëlle Tixier ◽  
Stéphane Rousset ◽  
Pierre-Alain Barraud ◽  
Corinne Cian

A large body of research has shown that visually induced self-motion (vection) and cognitive processing may interfere with each other. The aim of this study was to assess the interactive effects of a visual motion inducing vection (uniform motion in roll) versus a visual motion without vection (non-uniform motion) and long-term memory processing using the characteristics of standing posture (quiet stance). As the level of interference may be related to the nature of the cognitive tasks used, we examined the effect of visual motion on a memory task which requires a spatial process (episodic recollection) versus a memory task which does not require this process (semantic comparisons). Results confirm data of the literature showing that compensatory postural response in the same direction as background motion. Repeatedly watching visual uniform motion or increasing the cognitive load with a memory task did not decrease postural deviations. Finally, participants were differentially controlling their balance according to the memory task but this difference was significant only in the vection condition and in the plane of background motion. Increased sway regularity (decreased entropy) combined with decreased postural stability (increase variance) during vection for the episodic task would indicate an ineffective postural control. The different interference of episodic and semantic memory on posture during visual motion is consistent with the involvement of spatial processes during episodic memory recollection. It can be suggested that spatial disorientation due to visual roll motion preferentially interferes with spatial cognitive tasks, as spatial tasks can draw on resources expended to control posture.


Sign in / Sign up

Export Citation Format

Share Document