postural responses
Recently Published Documents


TOTAL DOCUMENTS

451
(FIVE YEARS 76)

H-INDEX

56
(FIVE YEARS 4)

2022 ◽  
Vol 15 ◽  
Author(s):  
Franck Di Rienzo ◽  
Pierric Joassy ◽  
Thiago Ferreira Dias Kanthack ◽  
François Moncel ◽  
Quentin Mercier ◽  
...  

Motor Imagery (MI) reproduces cognitive operations associated with the actual motor preparation and execution. Postural recordings during MI reflect somatic motor commands targeting peripheral effectors involved in balance control. However, how these relate to the actual motor expertise and may vary along with the MI modality remains debated. In the present experiment, two groups of expert and non-expert gymnasts underwent stabilometric assessments while performing physically and mentally a balance skill. We implemented psychometric measures of MI ability, while stabilometric variables were calculated from the center of pressure (COP) oscillations. Psychometric evaluations revealed greater MI ability in experts, specifically for the visual modality. Experts exhibited reduced surface COP oscillations in the antero-posterior axis compared to non-experts during the balance skill (14.90%, 95% CI 34.48–4.68, p < 0.05). Experts further exhibited reduced length of COP displacement in the antero-posterior axis and as a function of the displacement area during visual and kinesthetic MI compared to the control condition (20.51%, 95% CI 0.99–40.03 and 21.85%, 95% CI 2.33–41.37, respectively, both p < 0.05). Predictive relationships were found between the stabilometric correlates of visual MI and physical practice of the balance skill, as well as between the stabilometric correlates of kinesthetic MI and the training experience in experts. Present results provide original stabilometric insights into the relationships between MI and expertise level. While data support the incomplete inhibition of postural commands during MI, whether postural responses during MI of various modalities mirror the level of motor expertise remains unclear.


2022 ◽  
Vol 12 ◽  
Author(s):  
Daša Gorjan ◽  
Nejc Šarabon ◽  
Jan Babič

Understanding the relation between the motion of the center of mass (COM) and the center of pressure (COP) is important to understand the underlying mechanisms of maintaining body equilibrium. One way to investigate this is to stabilize COM by fixing the joints of the human and looking at the corresponding COP reactions. However, this approach constrains the natural motion of the human. To avoid this shortcoming, we stabilized COM without constraining the joint movements by using an external stabilization method based on inverted cart-pendulum system. Interestingly, this method only stabilized COM of a subgroup of participants and had a destabilizing effect for others which implies significant variability in inter-individual postural control. The aim of this work was to investigate the underlying causes of inter-individual variability by studying the postural parameters of quiet standing before the external stabilization. Eighteen volunteers took part in the experiment where they were standing on an actuated cart for 335 s. In the middle of this period we stabilized their COM in anteroposterior direction for 105 s. To stabilize the COM, we controlled the position of the cart using a double proportional–integral–derivative controller. We recorded COM position throughout the experiment, calculated its velocity, amplitude, and frequency during the quiet standing before the stabilization, and used these parameters as features in hierarchical clustering method. Clustering solution revealed that postural parameters of quiet standing before the stabilization cannot explain the inter-individual variability of postural responses during the external COM stabilization. COM was successfully stabilized for a group of participants but had a destabilizing effect on the others, showing a variability in individual postural control which cannot be explained by postural parameters of quiet-stance.


Children ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 14
Author(s):  
Riccardo Nocini ◽  
Carlo Baraldi ◽  
Enrico Apa ◽  
Andrea Ciorba ◽  
Daniele Monzani ◽  
...  

Vestibular migraine (VM) is the most common cause of episodic vertigo in children. Vertigo, nausea, dizziness and unsteadiness are often complained of by children with migraine, which can precede, follow or be present simultaneously with headache. The aim of this study was to use posturography to investigate the visually evoked postural responses (VEPRs) of children with VM and compare them to data obtained from children with primary headache (M) and controls (C). Twenty children diagnosed as affected by VM, nineteen children with M without aura and twenty healthy subjects were recruited in this cross-sectional study. Posturography was performed by a standardized stabilometric force-platform (Svep-Politecnica) in the following conditions: open eyes (OE), closed eyes (CE) and during full-field horizontal optokinetic stimulation (OKN-S). Electronystagmography was performed simultaneously to analyze optokinetic reflex parameters. In the OE condition, no difference was found between groups with respect to body sway area. In contrast, this parameter increased in the two pathological groups with respect to controls in the CE condition. The optokinetic stimulations also induced a similar increase of body sway area in the M group relative to controls, but a further increase was elicited in the VM group. Electronystagmographic recording also revealed different optokinetic reflex parameters in the latter groups. This study disclosed an abnormal sensitivity of children with M and VM to full-field moving scenes and a consequent destabilization of posture, as documented by the abnormal VEPRs. Children with VM were particularly exposed to this risk. Possible clinical implications of these findings are discussed.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261266
Author(s):  
Maëlle Tixier ◽  
Stéphane Rousset ◽  
Pierre-Alain Barraud ◽  
Corinne Cian

A large body of research has shown that visually induced self-motion (vection) and cognitive processing may interfere with each other. The aim of this study was to assess the interactive effects of a visual motion inducing vection (uniform motion in roll) versus a visual motion without vection (non-uniform motion) and long-term memory processing using the characteristics of standing posture (quiet stance). As the level of interference may be related to the nature of the cognitive tasks used, we examined the effect of visual motion on a memory task which requires a spatial process (episodic recollection) versus a memory task which does not require this process (semantic comparisons). Results confirm data of the literature showing that compensatory postural response in the same direction as background motion. Repeatedly watching visual uniform motion or increasing the cognitive load with a memory task did not decrease postural deviations. Finally, participants were differentially controlling their balance according to the memory task but this difference was significant only in the vection condition and in the plane of background motion. Increased sway regularity (decreased entropy) combined with decreased postural stability (increase variance) during vection for the episodic task would indicate an ineffective postural control. The different interference of episodic and semantic memory on posture during visual motion is consistent with the involvement of spatial processes during episodic memory recollection. It can be suggested that spatial disorientation due to visual roll motion preferentially interferes with spatial cognitive tasks, as spatial tasks can draw on resources expended to control posture.


2021 ◽  
Vol 12 ◽  
Author(s):  
Thomas Romeas ◽  
Selma Greffou ◽  
Remy Allard ◽  
Robert Forget ◽  
Michelle McKerral ◽  
...  

Motor control deficits outlasting self-reported symptoms are often reported following mild traumatic brain injury (mTBI). The exact duration and nature of these deficits remains unknown. The current study aimed to compare postural responses to static or dynamic virtual visual inputs and during standard clinical tests of balance in 38 children between 9 and 18 years-of-age, at 2 weeks, 3 and 12 months post-concussion. Body sway amplitude (BSA) and postural instability (vRMS) were measured in a 3D virtual reality (VR) tunnel (i.e., optic flow) moving in the antero-posterior direction in different conditions. Measures derived from standard clinical balance evaluations (BOT-2, Timed tasks) and post-concussion symptoms (PCSS-R) were also assessed. Results were compared to those of 38 healthy non-injured children following a similar testing schedule and matched according to age, gender, and premorbid level of physical activity. Results highlighted greater postural response with BSA and vRMS measures at 3 months post-mTBI, but not at 12 months when compared to controls, whereas no differences were observed in post-concussion symptoms between mTBI and controls at 3 and 12 months. These deficits were specifically identified using measures of postural response in reaction to 3D dynamic visual inputs in the VR paradigm, while items from the BOT-2 and the 3 timed tasks did not reveal deficits at any of the test sessions. PCSS-R scores correlated between sessions and with the most challenging condition of the BOT-2 and as well as with the timed tasks, but not with BSA and vRMS. Scores obtained in the most challenging conditions of clinical balance tests also correlated weakly with BSA and vRMS measures in the dynamic conditions. These preliminary findings suggest that using 3D dynamic visual inputs such as optic flow in a controlled VR environment could help detect subtle postural impairments and inspire the development of clinical tools to guide rehabilitation and return to play recommendations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gabriela F. Carvalho ◽  
Kerstin Luedtke ◽  
Carina F. Pinheiro ◽  
Renato Moraes ◽  
Tenysson W. Lemos ◽  
...  

Background: It is evidenced that migraineurs present balance deficits. However, the balance recovery following unexpected ground perturbations, which reflect conditions of everyday activities, has not been investigated in this population.Aim: We aimed to assess the reactive postural responses among patients with migraine with and without aura, chronic migraine, and controls. We further aimed to assess the factors associated with greater self-report of falls.Methods: Ninety patients diagnosed by headache specialists were equally classified into three migraine subgroups according to the presence of aura and chronic migraine. Thirty controls were also recruited. All participants underwent the motor control test (MCT) and adaptation test (ADT) protocols of dynamic posturography tests (EquiTest®, NeuroCom, USA). Clinical and headache features and information on falls in the previous year, fear of falling, and vestibular symptoms were also assessed.Results: Patients with aura presented a greater sway area in most of the MCT conditions than the other three groups (p = 0.001). The aura group also presented delayed latency responses after perturbations compared with controls and patients without aura (p < 0.03). In the ADT, a greater sway area was observed in patients with aura than in groups without aura, chronic migraine, and controls (p < 0.0001). The MCT and ADT sway area, the frequency of aura, and the fear of falling explained 46% of the falls in the previous 12 months.Conclusion: Patients with aura exhibited greater delay and sway area after unexpected ground perturbations than controls and other migraine subgroups, which are related to the reported number of falls.


2021 ◽  
pp. 1-12
Author(s):  
Anjanibhargavi Ragothaman ◽  
Oscar Miranda-Dominguez ◽  
Barbara H. Brumbach ◽  
Andrew Giritharan ◽  
Damien A. Fair ◽  
...  

Background: Instrumented measures of balance and gait measure more specific balance and gait impairments than clinical rating scales. No prior studies have used objective balance/gait measures to examine associations with ventricular and brain volumes in people with Parkinson’s disease (PD). Objective: To test the hypothesis that larger ventricular and smaller cortical and subcortical volumes are associated with impaired balance and gait in people with PD. Methods: Regional volumes from structural brain images were included from 96 PD and 50 control subjects. Wearable inertial sensors quantified gait, anticipatory postural adjustments prior to step initiation (APAs), postural responses to a manual push, and standing postural sway on a foam surface. Multiple linear regression models assessed the relationship between brain volumes and balance/gait and their interactions in PD and controls, controlling for sex, age and corrected for multiple comparisons. Results: Smaller brainstem and subcortical gray matter volumes were associated with larger sway area in people with PD, but not healthy controls. In contrast, larger ventricle volume was associated with smaller APAs in healthy controls, but not in people with PD. A sub-analysis in PD showed significant interactions between freezers and non-freezers, in several subcortical areas with stride time variability, gait speed and step initiation. Conclusion: Our models indicate that smaller subcortical and brainstem volumes may be indicators of standing balance dysfunction in people with PD whereas enlarged ventricles may be related to step initiation difficulties in healthy aging. Also, multiple subcortical region atrophy may be associated with freezing of gait in PD.


Sign in / Sign up

Export Citation Format

Share Document