Human Respiratory Syncytial Virus Infects And Modulates Immune Responses Of Neonatal Lambs

Author(s):  
Fatoumata B. Sow ◽  
Jack Gallup ◽  
Alicia Olivier ◽  
Subramaniam Krishnan ◽  
JoAnn Suzich ◽  
...  
2019 ◽  
Vol 8 (4) ◽  
pp. 486
Author(s):  
López ◽  
Barriga ◽  
Lorente ◽  
Mir

Accurate antiviral humoral and cellular immune responses require prior recognition of antigenic peptides presented by human leukocyte antigen (HLA) class I and II molecules on the surface of antigen-presenting cells. Both the helper and the cytotoxic immune responses are critical for the control and the clearance of human respiratory syncytial virus (HRSV) infection, which is a significant cause of morbidity and mortality in infected pediatric, immunocompromised and elderly populations. In this article we review the immunoproteomics studies which have defined the general antigen processing and presentation rules that determine both the immunoprevalence and the immunodominance of the cellular immune response to HRSV. Mass spectrometry and functional analyses have shown that the HLA class I and II cellular immune responses against HRSV are mainly focused on three viral proteins: fusion, matrix, and nucleoprotein. Thus, these studies have important implications for vaccine development against this virus, since a vaccine construct including these three relevant HRSV proteins could efficiently stimulate the major components of the adaptive immune system: humoral, helper, and cytotoxic effector immune responses.


2020 ◽  
Author(s):  
Sarhad Alnajjar ◽  
Panchan Sitthicharoenchai ◽  
Jack Gallup ◽  
Mark Ackermann ◽  
David Verhoeven

AbstractRespiratory syncytial virus (RSV) is the primary cause of viral bronchiolitis resulting in hospitalization and a frequent cause of secondary respiratory bacterial infection, especially by Streptococcus pneumoniae (Spn) in infants. While murine studies have demonstrated enhanced morbidity during a viral/bacterial co-infection, human meta-studies have conflicting results. Moreover, little knowledge about the pathogenesis of emerging Spn serotype 22F, and especially the co-pathologies between RSV and Spn is known. Here, colostrum-deprived neonate lambs were divided into four groups. Two of the groups were nebulized with RSV M37, and the other two groups mock nebulized. At day 3 post-infection, one RSV group (RSV/Spn) and one mock-nebulized group (Spn only) were inoculated with Spn intratracheally. At day 6 post-infection, bacterial/viral loads were assessed along with histopathology and correlated with clinical symptoms. Lambs dually infected with RSV/Spn had higher RSV titers, but lower Spn. Additionally, lung lesions were observed to be more intense in the RSV/Spn group characterized by increased interalveolar wall thickness accompanied by neutrophil and lymphocyte infiltration. Despite lower Spn in lungs, co-infected lambs had more significant morbidity and histopathology, which correlated with a different cytokine response. Thus, enhanced disease severity during dual infection may be due to lesion development and altered immune responses rather than bacterial counts.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0235026
Author(s):  
Sarhad Alnajjar ◽  
Panchan Sitthicharoenchai ◽  
Jack Gallup ◽  
Mark Ackermann ◽  
David Verhoeven

Respiratory syncytial virus (RSV) is the primary cause of viral bronchiolitis resulting in hospitalization and a frequent cause of secondary respiratory bacterial infection, especially by Streptococcus pneumoniae (Spn) in infants. While murine studies have demonstrated enhanced morbidity during a viral/bacterial co-infection, human meta-studies have conflicting results. Moreover, little knowledge about the pathogenesis of emerging Spn serotype 22F, especially the co-pathologies between RSV and Spn, is known. Here, colostrum-deprived neonate lambs were divided into four groups. Two of the groups were nebulized with RSV M37, and the other two groups were mock nebulized. At day three post-RSV infection, one RSV group (RSV/Spn) and one mock-nebulized group (Spn only) were inoculated with Spn intratracheally. At day six post-RSV infection, bacterial/viral loads were assessed along with histopathology and correlated with clinical symptoms. Lambs dually infected with RSV/Spn trended with higher RSV titers, but lower Spn. Additionally, lung lesions were observed to be more frequent in the RSV/Spn group characterized by increased interalveolar wall thickness accompanied by neutrophil and lymphocyte infiltration and higher myeloperoxidase. Despite lower Spn in lungs, co-infected lambs had more significant morbidity and histopathology, which correlated with a different cytokine response. Thus, enhanced disease severity during dual infection may be due to lesion development and altered immune responses rather than bacterial counts.


2003 ◽  
Vol 62 (1) ◽  
pp. 27-36 ◽  
Author(s):  
C. Klinguer-Hamour ◽  
M.-C. Bussat ◽  
H. Plotnicky ◽  
D. Velin ◽  
N. Corvaïa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document