scholarly journals Increased Nicotinamide Adenine Dinucleotide Phosphate Oxidase 4 Expression Mediates Intrinsic Airway Smooth Muscle Hypercontractility in Asthma

2012 ◽  
Vol 185 (3) ◽  
pp. 267-274 ◽  
Author(s):  
Amanda Sutcliffe ◽  
Fay Hollins ◽  
Edith Gomez ◽  
Ruth Saunders ◽  
Camille Doe ◽  
...  
2002 ◽  
Vol 282 (4) ◽  
pp. L782-L795 ◽  
Author(s):  
Sukhdev S. Brar ◽  
Thomas P. Kennedy ◽  
Anne B. Sturrock ◽  
Thomas P. Huecksteadt ◽  
Mark T. Quinn ◽  
...  

Evidence is rapidly accumulating that low-activity-reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidases homologous to that in phagocytic cells generate reactive oxygen species as signaling intermediates in both endothelium and vascular smooth muscle. We therefore explored the possibility of such an oxidase regulating growth of airway smooth muscle (AWSM). Proliferation of human AWSM cells in culture was inhibited by the antioxidants catalase and N-acetylcysteine, and by the flavoprotein inhibitor diphenylene iodonium (DPI). Membranes prepared from human AWSM cells generated superoxide anion (O[Formula: see text]) measured by superoxide dismutase-inhibitable lucigenin chemiluminescence, with a distinct preference for NADPH instead of reduced nicotinamide adenine dinucleotide as substrate. Chemiluminescence was also inhibited by DPI, suggesting the presence of a flavoprotein containing oxidase generating O[Formula: see text] as a signaling molecule for cell growth. Examination of human AWSM cells by reverse transcriptase-polymerase chain reaction consistently demonstrated transcripts with sequences identical to those reported for p22phox. Transfection with p22phoxantisense oligonucleotides reduced human AWSM proliferation. Inhibition of NADPH oxidase activity with DPI prevented serum-induced activation of nuclear factor-κB (NF-κB), and overexpression of a superrepressor form of the NF-κB inhibitor IκBα significantly reduced human AWSM growth. These findings suggest that an NADPH oxidase containing p22phoxregulates growth-factor responsive human AWSM proliferation, and that the oxidase signals in part through activation of the prototypical redox-regulated transcription factor NF-κB.


Author(s):  
M. Arif Hayat

Although it is recognized that niacin (pyridine-3-carboxylic acid), incorporated as the amide in nicotinamide adenine dinucleotide (NAD) or in nicotinamide adenine dinucleotide phosphate (NADP), is a cofactor in hydrogen transfer in numerous enzyme reactions in all organisms studied, virtually no information is available on the effect of this vitamin on a cell at the submicroscopic level. Since mitochondria act as sites for many hydrogen transfer processes, the possible response of mitochondria to niacin treatment is, therefore, of critical interest.Onion bulbs were placed on vials filled with double distilled water in the dark at 25°C. After two days the bulbs and newly developed root system were transferred to vials containing 0.1% niacin. Root tips were collected at ¼, ½, 1, 2, 4, and 8 hr. intervals after treatment. The tissues were fixed in glutaraldehyde-OsO4 as well as in 2% KMnO4 according to standard procedures. In both cases, the tissues were dehydrated in an acetone series and embedded in Reynolds' lead citrate for 3-10 minutes.


Sign in / Sign up

Export Citation Format

Share Document