scholarly journals Transient Investigation of Stack-driven Air Flow Through Multiple Upper-vents in the Presence of Constant Indirect Flow Velocity in Rectangular Ventilated Building

2020 ◽  
Vol 4 (2) ◽  
pp. 14
Author(s):  
Muhammad Auwal Lawan, ◽  
Sunusi Aminu Nata’ala
Keyword(s):  
Air Flow ◽  
Author(s):  
B. P. Khozyainov

The article carries out the experimental and analytical studies of three-blade wind power installation and gives the technique for measurements of angular rate of wind turbine rotation depending on the wind speeds, the rotating moment and its power. We have made the comparison of the calculation results according to the formulas offered with the indicators of the wind turbine tests executed in natural conditions. The tests were carried out at wind speeds from 0.709 m/s to 6.427 m/s. The wind power efficiency (WPE) for ideal traditional installation is known to be 0.45. According to the analytical calculations, wind power efficiency of the wind turbine with 3-bladed and 6 wind guide screens at wind speedsfrom 0.709 to 6.427 is equal to 0.317, and in the range of speed from 0.709 to 4.5 m/s – 0.351, but the experimental coefficient is much higher. The analysis of WPE variations shows that the work with the wind guide screens at insignificant average air flow velocity during the set period of time appears to be more effective, than the work without them. If the air flow velocity increases, the wind power efficiency gradually decreases. Such a good fit between experimental data and analytical calculations is confirmed by comparison of F-test design criterion with its tabular values. In the design of wind turbines, it allows determining the wind turbine power, setting the geometrical parameters and mass of all details for their efficient performance.


Author(s):  
Marcel Escudier

This chapter is concerned primarily with the flow of a compressible fluid through stationary and moving blading, for the most part using the analysis introduced in Chapter 11. The principles of dimensional analysis are applied to determine the appropriate non-dimensional parameters to characterise the performance of a turbomachine. The analysis of incompressible flow through a linear cascade of aerofoil-like blades is followed by the analysis of compressible flow. Velocity triangles for flow relative to blades, and Euler’s turbomachinery equation, are introduced to analyse flow through a rotor. The concepts introduced are applied to the analysis of an axial-turbomachine stage comprising a stator and a rotor, which applies to either a compressor or a turbine.


Sadhana ◽  
2007 ◽  
Vol 32 (4) ◽  
pp. 347-363 ◽  
Author(s):  
S. R. Kale ◽  
S. V. Veeravalli ◽  
H. D. Punekar ◽  
M. M. Yelmule
Keyword(s):  
Air Flow ◽  

1976 ◽  
Vol 98 (3) ◽  
pp. 521-530 ◽  
Author(s):  
N. H. Kemp ◽  
H. Ohashi

Incompressible flow through an unstaggered cascade in general, unsteady, in-phase motion is considered. By methods of thin-airfoil theory, using the assumptions of wakes trailing back at the through-flow velocity, and the Kutta condition, exact analytical expressions are derived for loading, lift and moment. As application, harmonic motion is considered for plunging, pitching, and sinusoidal gusts. Numerical values of lift and moment for these three cases are given graphically (tables are available from the authors). The results show strong analogies with isolated unsteady thin-airfoil theory. They should prove useful as simple examples of unsteady effects in cascades, and as check cases for other approximate or purely numerical analyses.


1981 ◽  
Vol 24 (4) ◽  
pp. 1010-1013 ◽  
Author(s):  
Pitam Chandra ◽  
Louis D. Albright ◽  
Gerald E. Wilson
Keyword(s):  
Air Flow ◽  

Sign in / Sign up

Export Citation Format

Share Document