linear cascade
Recently Published Documents


TOTAL DOCUMENTS

287
(FIVE YEARS 41)

H-INDEX

22
(FIVE YEARS 2)

Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1974
Author(s):  
Jiří Fürst ◽  
Martin Lasota ◽  
Jan Lepicovsky ◽  
Josef Musil ◽  
Jan Pech ◽  
...  

The paper presents a numerical and experimental investigation of the effect of incindence angle offset in a two-dimensional section of a flat blade cascade in a high-speed wind tunnel. The aim of the current work is tp determine the aerodynamic excitation forces and approximation of the unsteady blade-loading function using a quasi-stationary approach. The numerical simulations were performed with an in-house finite-volume code built on the top of the OpenFOAM framework. The experimental data were acquired for regimes corresponding to the numerical setup. The comparison of the computational and experimental results is shown for the static pressure distributions on three blades and upstream and downstream of the cascade. The plot of the aerodynamic moments acting on all five blades shows that the adjacent blades are significantly influenced by the angular offset of the middle blade.


2021 ◽  
Author(s):  
Jeremy Zuccarello ◽  
David Saltzman ◽  
Shane Haydt ◽  
Stephen Lynch ◽  
Christopher Whitfield
Keyword(s):  

2021 ◽  
Author(s):  
Andrew Hayden ◽  
Cole Hefner ◽  
Alexandrina Untaroiu ◽  
John Gillespie ◽  
K. Todd Lowe

Abstract The StreamVane™ swirl distortion generator, developed by Virginia Tech, can efficiently reproduce the boundary layer of an airframe or duct found in boundary layer ingesting (BLI) aircraft. Due to manufacturing limitations, the vanes within StreamVanes induce unsteady, vortical wakes, commonly known as a von Karman vortex street. This paper investigates the use of a commercial URANS code and SST turbulence model to predict the vortex shedding frequency from the vanes. The objective was accomplished in two main tasks. First, the CFD methodology was validated by modeling the fluid dynamics of a linear cascade experiment done by the von Karman Institute. Second, the same methodology was applied to airfoils used in StreamVane design to calculate the shedding frequency as a function of turning angle and TE thickness. It was predicted that an increase in turning angle exponentially increased the shedding frequency while an increase in TE thickness exponentially decreased the shedding frequency. The results provided a correlation between the shedding frequency and airfoil characteristics in StreamVanes as well as various turbomachinery components.


AIAA Journal ◽  
2021 ◽  
Vol 59 (5) ◽  
pp. 1849-1860
Author(s):  
Long Cheng ◽  
Lin Du ◽  
Xiaoyu Wang ◽  
Xiaofeng Sun

2021 ◽  
pp. 1-25
Author(s):  
Christopher Marks ◽  
Nathan Fletcher ◽  
Rolf Sondergaard

Abstract The development of techniques that reduce the losses in the endwall region is an important area of research as it supports an increase in the turbine design space through the use of higher lift blade designs while maintaining high efficiency. Several active and passive shape contouring methods that reduce losses generated by the secondary flow have been developed and investigated on a high-lift front-loaded LP turbine research profile in a low-speed linear cascade configuration. This paper summarizes and compares alterations to the three-dimensional secondary flow field by the application of three different techniques: blade profile contouring, optimized endwall shape contouring, and localized low mass coefficient jets. Each method was applied to identical research blade profiles and compared in the same linear cascade wind tunnel resulting in a unique perspective into the loss reduction mechanisms associated with each technique. The design strategy will be discussed along with a detailed description of changes to the secondary flow field using in- and out-of-passage total pressure loss measurements and high-speed stereoscopic particle image velocimetry. The key findings include the loss reduction mechanisms associated with each approach and the manipulation of key endwall flow structures such as the passage vortex and a strong suction surface corner separation.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Vital Kumar Yadav Pillala ◽  
B. V. S. S. S. Prasad ◽  
N. Sitaram ◽  
M. Mahendran ◽  
Debasish Biswas ◽  
...  

AbstractThe paper presents details of a unique experimental facility along with necessary accessories and instrumentation for testing steam turbine cascade blades in wet and nucleating steam. A steam turbine rotor tip cascade is chosen for flow investigations. Cascade inlet flow measurements show uniform conditions with dry air and steam and dry air mixture of different ratios. Exit flow surveys indicate that excellent flow periodicity is obtained. Blade surface static pressure and exit total pressure distributions are also presented with dry air and with steam and dry air mixture of different ratios as the working medium at an exit Mach number of 0.52.


Sign in / Sign up

Export Citation Format

Share Document