Optimization of Three-Phase Induction Motor Design Considering Active Power Loss Effect: Application of Bacterial Foraging Algorithm

2019 ◽  
Vol 16 (4) ◽  
pp. 1415-1425
Author(s):  
V. P Sakthivel
2019 ◽  
Vol 18 (1) ◽  
pp. 26-35 ◽  
Author(s):  
Umar Musa ◽  
Abdullahi Abdullahi Mati ◽  
Tangaraj Yuvaraj

Voltage instability has been identified as the most critical factor responsible for poor power quality in electric power systems. The high losses experienced at the distribution level of these systems has become a major concern to power system operators, with about 10-13% of the total generation being dissipated as heat. Maintaining the system voltage within an acceptable limit will go a long way in reducing these losses and enhancing the overall system operational capability. The objective of this paper is to improve the voltage magnitude and reduce overall power losses in an existing 50-bus radial distribution feeder via the allocation of Distribution Static Compensator (DSTATCOM) using an established bacterial foraging algorithm (BFA) based model. The application of the swarm-based meta-heuristic model is extended to a three-quarter (75%) loading condition of the standard IEEE 33-bus test network and then, employed on the 50-bus Canteen feeder for both normal (100%) and three-quarter (75%) loading conditions. Comprehensive analysis was performed for both networks and the results were compared with their respective base-case scenarios. The final results of the evaluation obtained through simulation showed appreciable reduction in power losses and improvement in overall voltage profile with the allocation of DSTATCOM in both networks using the BFA based model. Voltage improvement in the region of 20.04% and active power loss reduction of 24.86% were recorded for three-quarter loading of the IEEE test network. For the 50-bus Canteen feeder, an overall voltage profile improvement of 6.13% and active power loss reduction of 22.84% were achieved for normal loading condition, whereas 2.99% and 19.71% improvement in total voltage profile and active power loss respectively were attained under three-quarter loading condition.


2018 ◽  
Vol 215 ◽  
pp. 01023 ◽  
Author(s):  
Zuriman Anthony ◽  
Erhaneli Erhaneli ◽  
Zulkarnaini Zulkarnaini

A 1-phase induction motor usually has a complicated windings design which compares to polyphase induction motor. In addition, a large capacitor start is required to operate the motor. It is an expensive way to operate the motor if it compare to polyphase induction motor. So, a new innovation method is required to make the motor more simple and cheaper. This research is purposed to study a new winding design for a single-phase capacitor motor. Winding design of the motor was conducted to a simple winding design like a 4-phase induction motor that has four identical windings. The comparator motor that use in this study was a Three-phase induction motor with data 1400 RPM, 1.5 HP, 50Hz, 380/220V, Y/Δ, 2.74/4.7A, 4 poles, that had the same current rating which the proposed method. The result showed that the motor design on this proposed method could be operated at 88.18 % power rating with power factor close to unity.


1987 ◽  
Vol PER-7 (9) ◽  
pp. 42-43
Author(s):  
J. Appelbaum ◽  
I. A. Khan ◽  
E. F. Fuchs ◽  
J. C. White

Sign in / Sign up

Export Citation Format

Share Document