A Prior-Information-Based Combination Solution for Picking the Difference of Time-of-Flight in Ultrasound Computed Tomography

2020 ◽  
Vol 10 (3) ◽  
pp. 763-768 ◽  
Author(s):  
Xiaoyue Fang ◽  
Junjie Song ◽  
Kuolin Liu ◽  
Yun Wu ◽  
Qiude Zhang ◽  
...  

Sound speed imaging is one modal of ultrasound computed tomography (USCT) which is helpful for early breast disease diagnosis. One of the most critical processes of sound speed reconstruction is time-of-flight picking. As each of the traditional time-of-flight picking methods has shortcomings for real data, in this study, a practical priorinformation-based combination (PIBC) solution for picking the difference of time-of-flight between the reference data and the object data (DTOF) is proposed to enhance the reconstruction accuracy and uniformity. By using DTOF, some system bias will be effectively alleviated. Firstly, by analyzing the signal-amplitude, the "penetrating-through-the-object" and the "bypassing-the-object" signals are distinguished. Then for the "penetrating-throughthe-object" signals, based on the 'majority rule,' the consistency of DTOF picked by different methods are calculated as a basis to combine the advantages of different picking methods; for the "bypassing-the-object" signals, the DTOF closest to zero is chosen. Finally, the DTOFs are post-processed to suppress the noise by a median filter and to fix the deficiency of the system by an interpolation operator. The new solution is verified by in vitro breast phantom experiment conducted on the home-made USCT system "Lucid." The proposed PIBC solution can quantitatively decrease Root Mean Squared Error (RMSE) and Mean Squared Error (MSE) of DTOF picking and enhance the image quality of reconstructed sound speed images with higher accuracy and uniformity. This work is significant for ray-based sound speed reconstruction and can provide a fine initial solution for high-resolution wave-based reconstruction.

2017 ◽  
Vol 141 (3) ◽  
pp. 1595-1604 ◽  
Author(s):  
M. Pérez-Liva ◽  
J. L. Herraiz ◽  
J. M. Udías ◽  
E. Miller ◽  
B. T. Cox ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 963
Author(s):  
Yu Pei ◽  
Guojun Zhang ◽  
Yu Zhang ◽  
Wendong Zhang

Ultrasound computed tomography (USCT) systems based on capacitive micromachined ultrasonic transducer (CMUT) arrays have a wide range of application prospects. For this paper, a high-precision image reconstruction method based on the propagation path of ultrasound in breast tissue are designed for the CMUT ring array; that is, time-reversal algorithms and FBP algorithms are respectively used to reconstruct sound speed distribution and acoustic attenuation distribution. The feasibility of this reconstruction method is verified by numerical simulation and breast model experiments. According to reconstruction results, sound speed distribution reconstruction deviation can be reduced by 53.15% through a time-reversal algorithm based on wave propagation theory. The attenuation coefficient distribution reconstruction deviation can be reduced by 61.53% through FBP based on ray propagation theory. The research results in this paper will provide key technological support for a new generation of ultrasound computed tomography systems.


2012 ◽  
Vol 24 (06) ◽  
pp. 503-511 ◽  
Author(s):  
Sahar Jahani ◽  
S. Kamaledin Setarehdan

Karyotyping is a standard method for presenting the complete set of the pictures of human chromosomes in a table-like format. It is usually used by a cytogenetic expert to predict the common genetic abnormalities. Producing a Karyotype from microscopic images of human chromosomes is a tedious and time-consuming task, so an automatic Karyotyping system would help the cytogenetic expert in his/her routine work. Automatic Karyotyping algorithms usually suffer the non-rigid nature of the chromosomes, which makes them to have unpredictable shapes and sizes in the images. One such problem that usually needs the operator's interaction is the existence of curved chromosomes within the images. In this paper, an effective algorithm for identification and straightening of curved human chromosomes is presented. This will extend the domain of application of the most of the previously reported algorithms to the curved chromosomes. The proposed algorithm is applied to single chromosomes that are initially modified by means of a Median filter. The medial axis (MA) of the filtered image is then extracted using a thinning procedure, which is carried out on the binary version of the image. By comparing the Euclidean distance of the endpoints and the length of the MA, a curved chromosome is identified. For chromosome straightening, the initially extracted medial axis is then modified by extending it in both ends considering the slope of the MA. Next, the original input image is intensity sampled over many closely located perpendicular lines to the MA along the chromosome which are then mapped into a matrix (as rows) producing a vertically oriented straight chromosome. For evaluation, the algorithm is applied to 54 selected highly curved chromosomes obtained at the pro-metaphase stage, which were provided by the Cytogenetic Laboratory of Cancer Institute, Imam Hospital, Tehran, Iran. The density profile and the centromeric index of the chromosomes which are among the most important and commonly used features for chromosome identification are calculated by the expert both before and after the straightening procedure. The mean squared error and the variance of the difference between the two are then obtained and compared. The results show a good agreement between the two, hence the effectiveness of the proposed method. The proposed algorithm therefore extends the domain of application of the previously reported algorithms to the highly curved chromosomes.


2020 ◽  
Vol 13 (03) ◽  
pp. 2030007 ◽  
Author(s):  
Tong Wang ◽  
Wen Liu ◽  
Chao Tian

Based on the energy conversion of light into sound, photoacoustic computed tomography (PACT) is an emerging biomedical imaging modality and has unique applications in a range of biomedical fields. In PACT, image formation relies on a process called acoustic inversion from received photoacoustic signals. While most PACT systems perform this inversion with a basic assumption that biological tissues are acoustically homogeneous, the community gradually realizes that the intrinsic acoustic heterogeneity of tissues could pose distortions and artifacts to finally formed images. This paper surveys the most recent research progress on acoustic heterogeneity correction in PACT. Four major strategies are reviewed in detail, including half-time or partial-time reconstruction, autofocus reconstruction by optimizing sound speed maps, joint reconstruction of optical absorption and sound speed maps, and ultrasound computed tomography (USCT) enhanced reconstruction. The correction of acoustic heterogeneity helps improve the imaging performance of PACT.


2021 ◽  
Vol 5 (10) ◽  
pp. 1-3
Author(s):  
Panagiotis Koulountzios ◽  
Tomasz Rymarczyk ◽  
Manuchehr Soleimani

Sign in / Sign up

Export Citation Format

Share Document