Classification of Deep Convolutional Neural Network in Thyroid Ultrasound Images

2020 ◽  
Vol 10 (8) ◽  
pp. 1943-1948
Author(s):  
Ran Hui ◽  
Jiaxing Chen ◽  
Yu Liu ◽  
Lin Shi ◽  
Chao Fu ◽  
...  

Objective: To explore the application of deep convolutional neural network theory in thyroid ultrasound image system analysis and eigenvalue extraction to help medically predict the patient’s condition. Methods: The thyroid color ultrasound image dataset of our hospital was selected as the training and test samples. The comparison experiment was designed in the deep convolutional neural network learning framework to test the feasibility of the method. Results: Image information classification based on deep neural network algorithm can predict thyroid nodule lesions well, and has good accuracy in the classification test of benign and malignant nodules. Conclusion: The clinical application of deep learning method and thyroid ultrasound image feature value extraction and system analysis can improve the accuracy of clinical thyroid benign and malignant classification.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Pei Yang ◽  
Yong Pi ◽  
Tao He ◽  
Jiangming Sun ◽  
Jianan Wei ◽  
...  

Abstract Background 99mTc-pertechnetate thyroid scintigraphy is a valid complementary avenue for evaluating thyroid disease in the clinic, the image feature of thyroid scintigram is relatively simple but the interpretation still has a moderate consistency among physicians. Thus, we aimed to develop an artificial intelligence (AI) system to automatically classify the four patterns of thyroid scintigram. Methods We collected 3087 thyroid scintigrams from center 1 to construct the training dataset (n = 2468) and internal validating dataset (n = 619), and another 302 cases from center 2 as external validating datasets. Four pre-trained neural networks that included ResNet50, DenseNet169, InceptionV3, and InceptionResNetV2 were implemented to construct AI models. The models were trained separately with transfer learning. We evaluated each model’s performance with metrics as following: accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), recall, precision, and F1-score. Results The overall accuracy of four pre-trained neural networks in classifying four common uptake patterns of thyroid scintigrams all exceeded 90%, and the InceptionV3 stands out from others. It reached the highest performance with an overall accuracy of 92.73% for internal validation and 87.75% for external validation, respectively. As for each category of thyroid scintigrams, the area under the receiver operator characteristic curve (AUC) was 0.986 for ‘diffusely increased,’ 0.997 for ‘diffusely decreased,’ 0.998 for ‘focal increased,’ and 0.945 for ‘heterogeneous uptake’ in internal validation, respectively. Accordingly, the corresponding performances also obtained an ideal result of 0.939, 1.000, 0.974, and 0.915 in external validation, respectively. Conclusions Deep convolutional neural network-based AI model represented considerable performance in the classification of thyroid scintigrams, which may help physicians improve the interpretation of thyroid scintigrams more consistently and efficiently.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9 ◽  
Author(s):  
Weibin Chen ◽  
Zhiyang Gu ◽  
Zhimin Liu ◽  
Yaoyao Fu ◽  
Zhipeng Ye ◽  
...  

Thyroid nodule is a clinical disorder with a high incidence rate, with large number of cases being detected every year globally. Early analysis of a benign or malignant thyroid nodule using ultrasound imaging is of great importance in the diagnosis of thyroid cancer. Although the b-mode ultrasound can be used to find the presence of a nodule in the thyroid, there is no existing method for an accurate and automatic diagnosis of the ultrasound image. In this pursuit, the present study envisaged the development of an ultrasound diagnosis method for the accurate and efficient identification of thyroid nodules, based on transfer learning and deep convolutional neural network. Initially, the Total Variation- (TV-) based self-adaptive image restoration method was adopted to preprocess the thyroid ultrasound image and remove the boarder and marks. With data augmentation as a training set, transfer learning with the trained GoogLeNet convolutional neural network was performed to extract image features. Finally, joint training and secondary transfer learning were performed to improve the classification accuracy, based on the thyroid images from open source data sets and the thyroid images collected from local hospitals. The GoogLeNet model was established for the experiments on thyroid ultrasound image data sets. Compared with the network established with LeNet5, VGG16, GoogLeNet, and GoogLeNet (Improved), the results showed that using GoogLeNet (Improved) model enhanced the accuracy for the nodule classification. The joint training of different data sets and the secondary transfer learning further improved its accuracy. The results of experiments on the medical image data sets of various types of diseased and normal thyroids showed that the accuracy rate of classification and diagnosis of this method was 96.04%, with a significant clinical application value.


2020 ◽  
Vol 10 (10) ◽  
pp. 2421-2429
Author(s):  
Fakhri Alam Khan ◽  
Ateeq Ur Rehman Butt ◽  
Muhammad Asif ◽  
Hanan Aljuaid ◽  
Awais Adnan ◽  
...  

World Health Organization (WHO) manage health-related statistics all around the world by taking the necessary measures. What could be better for health and what may be the leading causes of deaths, all these statistics are well organized by WHO. Burn Injuries are mostly viewed in middle and low-income countries due to lack of resources, the result may come in the form of deaths by serious injuries caused by burning. Due to the non-accessibility of specialists and burn surgeons, simple and basic health care units situated at tribble areas as well as in small cities are facing the problem to diagnose the burn depths accurately. The primary goals and objectives of this research task are to segment the burnt region of skin from the normal skin and to diagnose the burn depths as per the level of burn. The dataset contains the 600 images of burnt patients and has been taken in a real-time environment from the Allied Burn and Reconstructive Surgery Unit (ABRSU) Faisalabad, Pakistan. Burnt human skin segmentation was carried by the use of Otsu's method and the image feature vector was obtained by using statistical calculations such as mean and median. A classifier Deep Convolutional Neural Network based on deep learning was used to classify the burnt human skin as per the level of burn into different depths. Almost 60 percent of images have been taken to train the classifier and the rest of the 40 percent burnt skin images were used to estimate the average accuracy of the classifier. The average accuracy of the DCNN classifier was noted as 83.4 percent and these are the best results yet. By the obtained results of this research task, young physicians and practitioners may be able to diagnose the burn depths and start the proper medication.


2018 ◽  
Vol 13 (12) ◽  
pp. 1895-1903 ◽  
Author(s):  
Michał Byra ◽  
Grzegorz Styczynski ◽  
Cezary Szmigielski ◽  
Piotr Kalinowski ◽  
Łukasz Michałowski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document