Organic Sensitizers Containing Julolidine Moiety for Dye-Sensitized Solar Cells

2008 ◽  
Vol 8 (9) ◽  
pp. 4761-4766 ◽  
Author(s):  
Dong Wook Kim ◽  
Jin Joo Choi ◽  
Man Ku Kang ◽  
Yongku Kang ◽  
Changjin Lee

We prepared organic sensitizers (S1 and S2) containing julolidine moiety as a donor, phenyl or phenylene thiophene units as a conjugation bridge, and cyano acetic acid as an acceptor for dye sensitized solar cells. S1 exhibited two absorption maxima at 441 nm (ε = 26 200) and 317 nm (ε = 15 500) due to the π–π* transition of the dye molecule. S2 dyes with an additional thiophene unit showed the absorption maximum extended by 18 nm. DSSCs based on S1 dye achieved 2.66% of power conversion efficiency with 8.3 mA cm−2 of short circuit current, 576 mV of open circuit voltage, and 0.56 of fill factor. DSSCs using S2 dye with a longer conjugation attained only 1.48% of power conversion efficiency. The 0.21 V lower driving force for regeneration of the S2 dye compared to the S1 dye is one of the reasons for low conversion efficiency of the S2 dye.

2017 ◽  
Vol 5 (24) ◽  
pp. 12310-12321 ◽  
Author(s):  
Yamuna Ezhumalai ◽  
Byunghong Lee ◽  
Miao-Syuan Fan ◽  
Boris Harutyunyan ◽  
Kumaresan Prabakaran ◽  
...  

New branched alkyl tetrathienothiophene (TTAR)-based organic sensitizers with power conversion efficiency up to 11%.


2017 ◽  
Vol 19 (42) ◽  
pp. 28579-28587 ◽  
Author(s):  
Mohammad Adil Afroz ◽  
Keval K. Sonigara ◽  
Telugu Bhim Raju ◽  
Saurabh S. Soni ◽  
Parameswar Krishnan Iyer

The study on specific positions of fluorine substitution on phenylene spacer in organic dyes illustrated that ortho-substitution resulted in the improved power conversion efficiency of >4%.


2015 ◽  
Vol 3 (6) ◽  
pp. 3103-3112 ◽  
Author(s):  
Yong Hua ◽  
Jian He ◽  
Caishun Zhang ◽  
Chunjiang Qin ◽  
Liyuan Han ◽  
...  

A series of thiadiazolo[3,4-c]pyridine-cored organic sensitizers has been prepared for DSSC applications. The structural optimization with π-conjugated spacers enhanced the power conversion efficiency to 6.30% from 2.86%.


2021 ◽  
Vol 11 (3) ◽  
pp. 674-678
Author(s):  
Shibing Zou ◽  
Lingting Song ◽  
Junhong Duan ◽  
Le Huang ◽  
Weiqing Liu ◽  
...  

2015 ◽  
Vol 19 (01-03) ◽  
pp. 175-191 ◽  
Author(s):  
Ganesh D. Sharma ◽  
Galateia E. Zervaki ◽  
Kalliopi Ladomenou ◽  
Emmanuel N. Koukaras ◽  
Panagiotis P. Angaridis ◽  
...  

Two porphyrin dyads with the donor-π-acceptor molecular architecture, namely ( ZnP )-[triazine-gly]-( H 2 PCOOH ) and ( ZnP )-[triazine-Npip]-( H 2 PCOOH ), which consist of a zinc-metalated porphyrin unit and a free-base porphyrin unit covalently linked at their peripheries to a central triazine group, substituted either by a glycine in the former or a N-piperidine group in the latter, have been synthesized via consecutive amination substitution reactions of cyanuric chloride. The UV-vis absorption spectra and cyclic-voltammetry measurements of the two dyads, as well as theoretical calculations based on Density Functional Theory, suggest that they have suitable frontier orbital energy levels for use as sensitizers in dye-sensitized solar cells. Dye-sensitized solar cells based on ( ZnP )-[triazine-gly]-( H 2 PCOOH ) and ( ZnP )-[triazine-Npip]-( H 2 PCOOH ) have been fabricated, and they were found to exhibit power conversion efficiency values of 5.44 and 4.15%, respectively. Photovoltaic measurements (J–V curves) and incident photon to current conversion efficiency spectra of the two solar cells suggest that the higher power conversion efficiency value of the former solar cell is a result of its enhanced short circuit current, open circuit voltage, and fill factor values, as well as higher dye loading. This is ascribed to the existence of two carboxylic acid anchoring groups in ( ZnP )-[triazine-gly]-( H 2 PCOOH ), compared to one carboxylic acid group in ( ZnP )-[triazine-Npip]-( H 2 PCOOH ), which leads to a more effective binding onto the TiO 2 photoanode. Electrochemical impedance spectra show evidence that the ( ZnP )-[triazine-gly]-( H 2 PCOOH ) based solar cell exhibits a longer electron lifetime and more effective suppression of charge recombination reactions between the injected electrons and electrolyte.


Sign in / Sign up

Export Citation Format

Share Document