Bend-Insensitive Discrimination of Strain and Temperature Based on Fiber Transmission Grating Inscribed on High Birefringence Photonic Crystal Fiber

2021 ◽  
Vol 21 (3) ◽  
pp. 1948-1954
Author(s):  
Jinsil Han ◽  
Jihoon Kim ◽  
Seul-Lee Lee ◽  
Sungwook Choi ◽  
Yong Wook Lee

In this paper, we propose a bend-insensitive optical fiber sensor capable of separately measuring strain and temperature by incorporating a fiber transmission grating (FTG) inscribed on high birefringence photonic crystal fiber (HBPCF) with a CO2 laser. The FTG was fabricated by exposing unjacketed HBPCF to CO2 laser pulses using the line-by-line technique. The FTG inscribed on HBPCF, referred to as the HBPC-FTG, has two resonance dips with different wavelengths depending on input polarization. These two resonance dips were utilized as sensor indicator dips denoted by a shorter wavelength dip (SD) and a longer wavelength dip (LD). The strain and temperature responses of the SD and LD were investigated in a strain range of 0 to 3105 μ and a temperature range of 30 to 85 °C, respectively. The measured strain sensitivities of the SD and LD at room temperature (25 °C) were approximately −0.46 and −0.58 pm/μ, respectively. Similarly, the measured temperature sensitivities of the SD and LD without applied strain (0 μ) were ˜5.99 and ˜9.89 pm/°C, respectively. Owing to their linear and independent responses to strain and temperature, strain and temperature changes applied to the HBPC-FTG can be simultaneously estimated from the measured wavelength shifts of the two indicator dips (i.e., SD and LD) using their predetermined strain and temperature sensitivities. Moreover, bend-induced spectral variations of the SD and LD were also examined in a curvature range of 0–4.705 m−1, and it was observed that both dips showed little wavelength shift due to applied bending. Thus, it is concluded from the experimental results that the fabricated HBPC-FTG can be employed as a cost-effective sensor head for bend-insensitive discrimination of strain and temperature.

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1799
Author(s):  
Tianyu Yang ◽  
Liang Zhang ◽  
Yunjie Shi ◽  
Shidi Liu ◽  
Yuming Dong

A photonic crystal fiber (PCF) with high relative sensitivity was designed and investigated for the detection of chemical analytes in the terahertz (THz) regime. To ease the complexity, an extremely simple cladding employing four struts is adopted, which forms a rectangular shaped core area for filling with analytes. Results of enormous simulations indicate that a minimum 87.8% relative chemical sensitivity with low confinement and effective material absorption losses can be obtained for any kind of analyte, e.g., HCN (1.26), water (1.33), ethanol (1.35), KCN (1.41), or cocaine (1.50), whose refractive index falls in the range of 1.2 to 1.5. Besides, the PCF can also achieve high birefringence (∼0.01), low and flat dispersion, a large effective modal area, and a large numerical aperture within the investigated frequency range from 0.5 to 1.5 THz. We believe that the proposed PCF can be applied to chemical sensing of liquid and THz systems requiring wide-band polarization-maintaining transmission and low attenuation.


2006 ◽  
Author(s):  
Przemyslaw Szarniak ◽  
Matteo Foroni ◽  
Ryszard Buczynski ◽  
Dariusz Pysz ◽  
Piotr Wasylczyk ◽  
...  

Photonics ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 40 ◽  
Author(s):  
Sohel Rana ◽  
Nirmala Kandadai ◽  
Harish Subbaraman

In this paper, a high sensitivity, polarization preserving photonic crystal fiber (PCF), based on circular air holes for sensing in the terahertz (THz) band, is presented. The finite element method, a practical and precise computational technique for describing the interactions between light and matter, is used to compute the modal properties of the designed fiber. For the designed PCF, comprising of circular air holes in both the cladding and in the porous core, a relative sensitivity of 73.5% and a high birefringence of 0.013 are achieved at 1.6 THz. The all circular air-hole structure, owing to its simplicity and compatibility with the current fiber draw technique for PCF fabrication, can be realized practically. It is anticipated that the designed fiber can be employed in applications such as detection of biological samples and toxic chemicals, imaging, and spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document